Hydrodynamics of Double Membrane Spreading in Biology
Eukaryotic cells exist in highly dynamic environments and are subject to a variety of existential threats, ranging from viruses to pathological defects in their own genome. To cope with these challenges, cells have developed a con...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2011-28566
ESTUDIOS BIOFISICOS DE COMPLEJOS LIPIDO-PROTEINA EN APOPTOSI...
219K€
Cerrado
ENDOMYOSHAPE
Identification of the molecular mechanisms whereby actin and...
163K€
Cerrado
BFU2014-59765-P
MECANISMOS MOLECULARES DE LA ENDOCITOSIS
303K€
Cerrado
JCI-2009-05491
Autophagic signaling from a novel membrane protein
101K€
Cerrado
BFU2012-34885
ESTEQUIOMETRIA Y EL MECANISMO DE ACCION DE LA DINAMINA DURAN...
187K€
Cerrado
MCS-MD
The Molecular Dynamics of Membrane Contact Sites
1M€
Cerrado
Información proyecto HYDROBIOMEM
Duración del proyecto: 25 meses
Fecha Inicio: 2023-07-06
Fecha Fin: 2025-08-31
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
211K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Eukaryotic cells exist in highly dynamic environments and are subject to a variety of existential threats, ranging from viruses to pathological defects in their own genome. To cope with these challenges, cells have developed a conserved pathway in order to degrade harmful objects internal to the cell. This process is know as autophagy.
Autophagy involves the formation of a double lipid membrane compartment that wraps around harmful targets, such as damaged organelles, protein aggregates or lipid droplets in order to facilitate their degradation. Although the genetic and molecular triggers for autophagy have been analysed in much detail, the biophysical principles governing such a dynamic process have received remarkably little attention. The biophysics of autophagy is highly complex biophysical process, involving the driven, non-equilibrium morphodynamics of a fluid membrane that must wrap its target. This incorporates molecular signalling and adhesion, vesicular trafficking and active force generation and complex flows of the lipid membrane in curved geometries as well as the Stokesian hydrodynamics of the embedding fluid. This makes the dynamics of autophagy essentially a problem of active soft matter physics.
In HYDROBIOMEM I will build on demonstrable expertise in active soft matter physics, morphology and fluid dynamics to develop novel theoretical and computational models to give mechanistic understanding and predictions of the dynamics of double membrane wrapping in autophagy. I will apply these tools, in close collaboration with experimentalists, to test existing biological hypotheses and give new insight into this ubiquitous process in cell biology.