HydrOdynamics & biomechanics of canceR cell mIgration in heterOgeNeous media
So far medicine has not solved the workings of a formidable and scientifically challenging aspect of cancer: metastasis, the migration of circulating tumor cells (CTC) through the body. In this highly interdisciplinary project, ex...
So far medicine has not solved the workings of a formidable and scientifically challenging aspect of cancer: metastasis, the migration of circulating tumor cells (CTC) through the body. In this highly interdisciplinary project, expertise and techniques from fluid dynamics are employed to study how CTC move through the vascular network and what prompts them to do so. The complex interplay among hydrodynamics, biophysics of intracellular interactions, and biochemical signaling within vascular networks is unknown. Our understanding of these underlying processes is hindered by the complex heterogeneity in the vascular network, comprising of capillaries, veins and arteries with a wide range of size and structural diversity. To unravel these processes I bring my expertise in fluid dynamics and porous media together with the state-of-the-art facilities on experimental cancer mechanobiology and multiscale modeling at the host and secondment institutes. I will conduct microfluidic experiments and simulations by simplifying the vascular network as strategically designed pore-network models. First, I will study the two-way interactions between the heterogeneous flow field and the deformable CTCs that control their overall transport, deformation and trapping. A heterogeneous flow field also induces a spatially nonuniform scalar concentration across the medium. CTCs are highly sensitive to certain biochemicals that can alter motility and invasiveness of CTCs. I will investigate how the local gradients of such biochemicals in a heterogeneous microsystem influence CTC migration. Finally, I will study the collective migration of CTC clusters through the system and quantify the dynamic intracellular interaction by measuring membrane tension and intracellular adhesion forces. These investigations will provide novel understandings on cancer metastasis that I will strategically communicate to research communities, stakeholders and general public.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.