HYDRIDE: Hydrogenase Driven H2 production through Design and Evolution
Climate change is shaping up to be the greatest existential threat that humanity has ever faced. To combat climate change and the corresponding energy crisis, greenhouse gas emissions must be substantially reduced by 2030 while de...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
H2Heat
Hydrogen from renewable energy for commercial building heati...
13M€
Cerrado
PhotoSynH2
Photosynthetic electron focusing technology for direct effic...
4M€
Cerrado
RYC-2008-03376
Producción de electricidad e hidrógeno a partir de aguas res...
192K€
Cerrado
PID2019-108592RB-C41
ESTUDIO NUMERICO-EXPERIMENTAL SOBRE LA SEGURIDAD Y LA COMBUS...
89K€
Cerrado
PID2020-117273RB-I00
PRODUCCION DE HIDROGENO VERDE DE FRACCIONES RESIDUALES DE PI...
211K€
Cerrado
PID2020-119539RB-I00
INTEGRACION DE LA PRODUCCION DE HIDROGENO VERDE EN BIORREFIN...
212K€
Cerrado
Información proyecto HYDRIDE
Duración del proyecto: 41 meses
Fecha Inicio: 2023-03-20
Fecha Fin: 2026-08-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
223K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Climate change is shaping up to be the greatest existential threat that humanity has ever faced. To combat climate change and the corresponding energy crisis, greenhouse gas emissions must be substantially reduced by 2030 while developing non-fossil future fuel alternatives, such as hydrogen. Hydrogen is highly versatile as it can be used in both fuel cells and electricity production. However, currently >95% of the global hydrogen production is fossil fuel-based and not sustainable. Biotechnological hydrogen production is realized through microorganisms harbouring hydrogenases and represents a promising alternative to expand the proportion of sustainable hydrogen within the global budget. However, the utilization of these enzymes is limited by various mechanisms, including inhibition by oxygen, making biohydrogen in its current state not economically sustainable.
HYDRIDE is an interdisciplinary study aiming to overcome the oxygen sensitivity of [FeFe]- hydrogenases by designing and evolving high-performance hydrogenase enzymes. This will be achieved by 2 major steps: 1) Using sequence data, ancestral enzymatic scaffolds (AEC) of [FeFe]-hydrogenases will be designed and characterized towards their ability to produce hydrogen, their oxygen sensitivity and active site characteristics. AECs have been shown to provide good starting points for laboratory evolution. Thus, these ACEs will be 2) evolved to overcome low hydrogen production under oxygen exposure using a high-throughput selection system.
Consequently, HYDRIDE will tackle one of the major bottlenecks for the utilization of [FeFe]-hydrogenases, paving the way for sustainable and economical biotechnological hydrogen production. While addressing two societal UN sustainability goals, the knowledge gained from this study will substantially advance other scientific fields, aiding e.g., the development and design of artificial catalysts.