HYDRIDE: Hydrogenase Driven H2 production through Design and Evolution
Climate change is shaping up to be the greatest existential threat that humanity has ever faced. To combat climate change and the corresponding energy crisis, greenhouse gas emissions must be substantially reduced by 2030 while de...
Climate change is shaping up to be the greatest existential threat that humanity has ever faced. To combat climate change and the corresponding energy crisis, greenhouse gas emissions must be substantially reduced by 2030 while developing non-fossil future fuel alternatives, such as hydrogen. Hydrogen is highly versatile as it can be used in both fuel cells and electricity production. However, currently >95% of the global hydrogen production is fossil fuel-based and not sustainable. Biotechnological hydrogen production is realized through microorganisms harbouring hydrogenases and represents a promising alternative to expand the proportion of sustainable hydrogen within the global budget. However, the utilization of these enzymes is limited by various mechanisms, including inhibition by oxygen, making biohydrogen in its current state not economically sustainable.
HYDRIDE is an interdisciplinary study aiming to overcome the oxygen sensitivity of [FeFe]- hydrogenases by designing and evolving high-performance hydrogenase enzymes. This will be achieved by 2 major steps: 1) Using sequence data, ancestral enzymatic scaffolds (AEC) of [FeFe]-hydrogenases will be designed and characterized towards their ability to produce hydrogen, their oxygen sensitivity and active site characteristics. AECs have been shown to provide good starting points for laboratory evolution. Thus, these ACEs will be 2) evolved to overcome low hydrogen production under oxygen exposure using a high-throughput selection system.
Consequently, HYDRIDE will tackle one of the major bottlenecks for the utilization of [FeFe]-hydrogenases, paving the way for sustainable and economical biotechnological hydrogen production. While addressing two societal UN sustainability goals, the knowledge gained from this study will substantially advance other scientific fields, aiding e.g., the development and design of artificial catalysts.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.