hybridFRET deciphering biomolecular structure and dynamics
To understand and modulate biological processes, we need their spatiotemporal molecular models. In this project we propose to build these models by a holistic approach. The recent methodological and technical advances in fluoresce...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2010-21369
DETECCION DE FLUORESCENCIA DE MOLECULAS INDIVIDUALES PARA EL...
73K€
Cerrado
CTQ2009-12412
NUEVOS METODOS DE MICRO-ESPECTROSCOPIA DE FLUORESCENCIA DE D...
11K€
Cerrado
UNZA08-4E-022
SISTEMA DE ANALISIS DE FLUORESCENCIA
171K€
Cerrado
SINGLEMOLFOLDING
Towards Protein Folding in the Cell with Single Molecule Spe...
1M€
Cerrado
SMALLOSTERY
Single molecule spectroscopy of coordinated motions in allos...
2M€
Cerrado
SAF2013-49743-EXP
DESCUBRIENDO LA RAPIDA DINAMICA MOLECULAR QUE GOBIERNA LAS F...
87K€
Cerrado
Información proyecto hybridFRET
Duración del proyecto: 67 meses
Fecha Inicio: 2015-10-14
Fecha Fin: 2021-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To understand and modulate biological processes, we need their spatiotemporal molecular models. In this project we propose to build these models by a holistic approach. The recent methodological and technical advances in fluorescence spectroscopy and microscopy as well as in multi-scale modelling of complex biochemical systems set the stage to tackle cross-fertilizing challenges in biophysics, biochemistry and cell biology. The applicant proposes to develop a novel integrative platform for a Molecular Fluorescence Microscope (MFM) to achieve ultimate resolution in space (sub-nanometer) and time (picoseconds) for characterizing structure and dynamics of proteins. MFM will combine Multi-parameter Fluorescence Detection with Computational Microscopy (molecular dynamics and coarse grained simulations) in a hybrid approach, first, to derive a complete molecular description of all fluorescence properties of the tailored dyes in proteins (objectives 1 and 2) and, second, to utilize this information in simulations to report on the protein properties (objective 3). In this hybrid approach high precision FRET measurements are the core experimental technique (hybridFRET). The MFM will allow us to tackle the central biophysical question of how intra- and intermolecular domain interactions modulate proteins' overall structure, dynamics, and thus ultimately function (objective 4). In this proposal we will apply MFM to two prototypic proteins of significant medical relevance. The combination with Multi-parameter Fluorescence Image Spectroscopy will exploit the ultimate resolution of the MFM for molecular protein imaging in live cells. To follow and ultimately understand biological processes, we need their spatiotemporal models of the integrative fluorescence spectroscopy platform. Until now, no holistic use of fluorescence spectroscopy for structural modelling of proteins has been reported.