HYBRID TANDEM CATALYTIC CONVERSION PROCESS TOWARDS HIGHER OXYGENATE E FUELS
Carbon neutral, high-energy density e-fuels are crucial to de-fossilize long-haul transport. Mildly oxygenated compounds such as C5+ (higher) alcohols and their ether derivatives hold the promise to overcome limitations of known e...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ELCOREL
Electrochemical Conversion of Renewable Electricity into Fue...
4M€
Cerrado
WU TANG
Selective Conversion of Water and CO2 Using Interfacial Elec...
2M€
Cerrado
UNVEIL
Revealing the natUre and ideNtity of actiVe sites through st...
189K€
Cerrado
TED2021-129506B-C22
CATALIZADORES CON ATOMOS DISPERSADOS PARA LA TERMO-FOTO VALO...
170K€
Cerrado
PID2019-111086RA-I00
HACIA LA COMPRENSION DE REQUISITOS ELECTRONICOS Y ATOMICOS D...
73K€
Cerrado
CTQ2016-77147-R
NUEVAS ESTRATEGIAS PARA LA CONVERSION DE CO2 UTILIZANDO CATA...
312K€
Cerrado
Información proyecto E-TANDEM
Duración del proyecto: 42 meses
Fecha Inicio: 2022-10-21
Fecha Fin: 2026-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Carbon neutral, high-energy density e-fuels are crucial to de-fossilize long-haul transport. Mildly oxygenated compounds such as C5+ (higher) alcohols and their ether derivatives hold the promise to overcome limitations of known e-fuels, such as non-oxygenated Fischer-Tropsch hydrocarbons or heavily oxygenated methanol and DME, but no process exists for their effective production. The project aims to develop a disruptive route wherein CO2, water and renewable power are converted to higher oxygenate e-fuels in a once-through hybrid process integrating three major catalysis branches: electrocatalysis is applied in a robust high-pressure CO2/H2O co-electrolysis step to produce e-syngas (H2/CO), which is converted in a single-reactor, slurry-phase process combining solid thermocatalysis for linear hydrocarbon synthesis and molecular chemocatalysis for in situ oxo-functionalization via reductive hydroformylation. In this process, integration of catalytic functionalities in tandem, alongside an engineered interfacing of high- and low-temperature conversion steps and energy unintensive membrane separation technologies, offer a blueprint for superior atom and energy efficiencies. The project will demonstrate the new e-fuel production process at bench-scale, and assess its capacity to cope with fluctuating energy inputs. Moreover, e-fuel formulation and life-cycle aspects are covered to fully realize the potential of the higher oxygenate e-fuel to distinctively unite excellent combustion properties (high cetane), exceptional reduction of tailpipe soot emissions, advantageous logistics as liquid at ambient conditions and compatibility with current-fleet fuel infrastructure and engine technologies, with emphasis on applications as diesel replacement in heavy-duty marine transport. An exploitation plan will be created together with international stakeholders, to consolidate EU’s capacity to export advanced e-fuel technologies to areas with vast green energy potential.