Hybrid quantum-classical neural networks for the characterization of noisy inter...
Hybrid quantum-classical neural networks for the characterization of noisy intermediate scale quantum computers
The objective of HyNNet NISQ is to develop tools based on hybrid quantum-classical algorithms for the characterization and measurement of quantum states prepared on near-term quantum computers.
Currently available quantum devices...
The objective of HyNNet NISQ is to develop tools based on hybrid quantum-classical algorithms for the characterization and measurement of quantum states prepared on near-term quantum computers.
Currently available quantum devices can perform computations that are challenging for classical computers. However, applications of quantum computers in science and economy require a further development of quantum hardware and algorithms. One of the major challenges is the measurement and characterization of quantum states produced as an output of quantum algorithms. Standard diagnostic techniques have become limited due to the quickly increasing system size and complexity of quantum devices. Here I will integrate adaptive quantum algorithms with classical artificial neutral networks to design hybrid quantum-classical neural networks. Employing machine learning techniques, I will train the hybrid neural networks to identify underlying characteristics of quantum states.
I will develop characterization and measurement tools required for the simulation of condensed matter physics and quantum chemistry on near-term quantum computers. First, I will investigate how to design and train hybrid neural networks to recognize quantum phases of matter, focusing on strongly correlated systems and topological order. Second, I will study how to exploit hybrid neural networks to reconstruct the full quantum state describing all properties of a quantum system. I will use this technique to efficiently measure quantities required for condensed matter physics and quantum chemistry simulations. The hybrid neural networks developed here can be readily realized on near-term quantum computers. Therefore, they will provide key tools for the development of quantum algorithms and next-generation quantum hardware.
I (Dr. Petr Zapletal) will carry out the proposed research with the input and advice from Prof. Christoph Bruder (University of Basel) and Prof. Michael J. Hartmann (FAU Erlangen-Nuremberg).ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.