HYbrid PERovskites for Next GeneratION Solar Cells and Lighting
An emerging class of materials called hybrid perovskites is poised to revolutionise how power is both produced and consumed by enabling the production of highly-efficient, tunable solar photovoltaics (PV) and light-emitting diodes...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PROPHET
oPtoelectROnic Properties of Hybrid pErovskiTes
185K€
Cerrado
ENE2017-90565-REDT
PEROVSKITAS PARA CONVERSION DE ENERGIA SOLAR Y OPTOELECTRONI...
19K€
Cerrado
PID2020-115514RB-I00
SINERGIAS ENTRE PEROVSKITAS HIBRIDAS Y MATERIALES 2D PARA DI...
110K€
Cerrado
PID2020-119628RB-C31
PEROVSKITAS DE METAL HALURO: NUEVAS ESTRUCTURAS PARA NUEVOS...
211K€
Cerrado
PID2019-107314RB-I00
NUEVAS PEROVSKITAS DE HALURO OBTENIDAS MEDIANTE LA ESTABILIZ...
242K€
Cerrado
MAT2016-76892-C3-2-R
ESTUDIO DE INTERFACES EN CAPAS DE PEROVSKITA DE ALTO RENDIMI...
121K€
Cerrado
Información proyecto HYPERION
Duración del proyecto: 73 meses
Fecha Inicio: 2017-09-26
Fecha Fin: 2023-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
An emerging class of materials called hybrid perovskites is poised to revolutionise how power is both produced and consumed by enabling the production of highly-efficient, tunable solar photovoltaics (PV) and light-emitting diodes (LEDs) at exceptionally low cost. Although the efficiencies of perovskite devices are rising fast, both PV and LEDs fall short of out-performing current technology and reaching their theoretical performance limits. To achieve their full potential, parasitic non-radiative losses and bandgap instabilities from ionic segregation must be fundamentally understood and eliminated. HYPERION will address these issues by i) elucidating the origins of non-radiative decay and ion segregation in films and devices, ii) devising means to eliminate these processes, and iii) implementing optimised materials into boundary-pushing PV and LED devices. This will be achieved through a groundbreaking hierarchical analysis of the perovskite structures that not only characterises thin films and interfaces, but also the sub-units that comprise them, including grain-to-grain and sub-granular properties. The optoelectronic behaviour on these scales will be simultaneously correlated with local structural and chemical properties. HYPERION will use this fundamental understanding to eliminate non-radiative losses and ionic segregation on all scales through passivation treatments and compositional control. Addressing these knowledge gaps in the operation of perovskites will produce fundamental semiconductor science discoveries as well as illuminate routes to yield optimised and functional perovskites across the broad bandgap range 1.2–3.0 eV. These will be used to demonstrate all-perovskite tandem PV devices with efficiency exceeding crystalline silicon (26%), and white light LEDs with efficacies surpassing fluorescent light (50 lm/W). The work will realise the promise of perovskite technology as a versatile and scalable energy solution to secure a sustainable future.