Hybrid Organic Thermoelectrics an Insight into Charge Transport Physics towards...
Hybrid Organic Thermoelectrics an Insight into Charge Transport Physics towards High Performance Organic Thermoelctric Generators
Thermoelectric generators (TEGs) which directly convert heat to electricity could be a valuable contributor to the world’s increasing demand for renewable energy. Organic semiconductors offer several unique advantages over inorgan...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HyThermEl
Hybrid Thermoelectrics From Model to Device
174K€
Cerrado
MAT2013-41099-R
MATERIALES PARA CONVERSION Y ALMACENAMIENTO DE ENERGIA: OXID...
380K€
Cerrado
PID2021-122477OB-I00
MATERIALES PARA APLICACIONES EN ENERGIA: PNICTUROS, CALCOGEN...
290K€
Cerrado
ORTHOGONAL
Origami inspired thermoelectric generators by printing and f...
2M€
Cerrado
PHOSFUN
Phosphorene functionalization a new platform for advanced m...
2M€
Cerrado
MERGING
Membrane based phononic engineering for energy harvesting
4M€
Cerrado
Información proyecto HYTEC
Duración del proyecto: 27 meses
Fecha Inicio: 2018-03-15
Fecha Fin: 2020-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Thermoelectric generators (TEGs) which directly convert heat to electricity could be a valuable contributor to the world’s increasing demand for renewable energy. Organic semiconductors offer several unique advantages over inorganic materials, such as solution processable, flexibility and biocompatibility, thus development of organic thermoelectrics (OTEs) will enable applications not currently feasible with traditional inorganic thermoelectrics (ITEs). Preliminary results showed that the thermoelectric performance of two organic semiconductors can be significantly improved through an evaporation doping methodology as well as incorporation of nanomaterials such as black Phosphorus (BP). Although the breakthroughs are promising, the charge transport mechanism is still unclear. Without such an understanding, the OTE systems can never be optimised. It is the objective of the proposed project (i) to understand charge transport in the semiconductors and their nanocomposites by integrating experimental output into charge transport model, (ii) to optimise their thermoelectric performance based on understanding of the charge transport mechanism, (iii) to fabricate the a hybrid OTE system with optimised thermoelectric performance (i.e. P > 1250 μWm-1K-2, κ<0.5 Wm-1K-1, and ZT≥1), and (iv) to fabricate a prototype hybrid OTE generator and demonstrate its application as a flexible solar thermoelectric generator and/or wearable thermoelectric generator for electronic-skin.