Hybrid Optical Interferometry for Quantitative Cancer Cell Diagnosis
A major challenge in the field of optical imaging of live cells is to achieve label-free but still fully quantitative measurements, which afford high-resolution morphological and mechanical mapping at the single cell level. In par...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TOTALPHOTON
A Total Photon Camera for Molecular Imaging of Live Cells
2M€
Cerrado
REAP
Revealing drug tolerant persister cells in cancer using cont...
6M€
Cerrado
3D-nanoMorph
Label free 3D morphological nanoscopy for studying sub cellu...
1M€
Cerrado
PHOQUS
PHOtonic tools for Quantitative imaging in tissUeS
4M€
Cerrado
SPECIPHIC
Label free quantitative nanoscopy for molecular specific ide...
1M€
Cerrado
Información proyecto OptiQ-CanDo
Duración del proyecto: 82 meses
Fecha Inicio: 2016-02-18
Fecha Fin: 2022-12-31
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A major challenge in the field of optical imaging of live cells is to achieve label-free but still fully quantitative measurements, which afford high-resolution morphological and mechanical mapping at the single cell level. In particular, developing efficient, non-subjective, quantitative optical imaging technologies for cancer cell diagnosis is a challenging task. The ground-breaking goal of this research project is to establish a robust experimental toolbox for label-free optical diagnosis and monitoring of live cancer cells in-vitro and their potential of metastasis. Optical interferometry is able to provide a platform for imaging live cells quantitatively without the risk of effects caused by using external contrast agents.
By overcoming critical technological barriers, I suggest novel hybrid optical interferometric approaches that provide a powerful nano-sensing tool for label-free quantitative measurement of cancer cells. This will be obtained by recording the dynamic quantitative, three-dimensional sub-nanometric structural and mechanical characterization of live cancer cells in different stages. For this aim, I will develop a novel low-noise broadband, common-path, off-axis interferometric system for sub-nanometric physical thickness and mechanical mapping of live cells in thousands of frames per second. Additionally, I will develop rapid tomographic approach for fully capturing the cell three-dimensional refractive-index distribution, as a tool to characterize cancer progression. Interferometry will be combined with multi-trap holographic optical tweezers and dielectrophoresis to enable complete cell manipulations including full rotation, imaging of non-adherent cells, and mechanical measurement validation. New set of interferometry-based quantitative parameters will be developed to enable characterization of cellular transformations, and used to characterize cancer cells with different metastasis potential, for cell lines and for circulating tumor cells.