Hybrid Human-AI Decision Support for Enhanced Human Empowerment in Dynamic Situa...
Hybrid Human-AI Decision Support for Enhanced Human Empowerment in Dynamic Situations
HumAIne will research, develop, validate and promote a novel operating system for Human-AI collaboration, which will enable the development of advanced decision making applications in dynamic, unstructured environments in differen...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto HumAIne
Duración del proyecto: 35 meses
Fecha Inicio: 2023-10-01
Fecha Fin: 2026-09-30
Líder del proyecto
GFT ITALIA SRL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
8M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
HumAIne will research, develop, validate and promote a novel operating system for Human-AI collaboration, which will enable the development of advanced decision making applications in dynamic, unstructured environments in different industrial sectors. The HumAIne OS will empower AI solution integrators to implement Human-AI collaboration systems that outperform AI systems and humans when working in isolation. HumAIne’s developments will be integrated into a single OS platform, which will coordinate four interwind components offering Active Learning (AL), Neuro-Symbolic Learning, Swarm Learning (SL) as well eXplainable AI (XAI) capabilities. These advanced AI paradigms are ideal for exploiting true Human-AI collaboration since, in each of them, the worker is the key actor with complete control and understanding of the performed operations. AL enables the development of effective Human-in-the-Loop systems that involve humans when AI faces increased uncertainty. Neuro-Symbolic Learning combines DL with semantics and rules to complete highly complex tasks with high accuracy while requiring considerably less training data than current AI models. Advanced XAI models will be made available, providing explanations of models’ predictions while considering the global context instead of just analysing the feature importance of a single AI model. HumAIne’s XAI will provide guidance to humans to enable the timely optimisation of AL and SL models where human participants provide feedback dynamically as well as fine-tuning of Neuro-Symbolic models. The platform will handle various types of structured and unstructured data, including inputs from humans that will be semantically correlated through ontologies, knowledge graphs, and semantic interoperability. HumAIne will complement its platform with complementary resources (e.g., training) and will be build a vibrant community of interested parties around it, to drive exploitation and wider use of the project's results.