Hybrid Human Artificial Collective Intelligence in Open-Ended Decision Making
HACID develops a novel hybrid collective intelligence for decision support to professionals facing complex open-ended problems, promoting engagement, fairness and trust. A decision support system (HACID-DSS) is proposed that is ba...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto HACID
Duración del proyecto: 35 meses
Fecha Inicio: 2022-09-01
Fecha Fin: 2025-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
HACID develops a novel hybrid collective intelligence for decision support to professionals facing complex open-ended problems, promoting engagement, fairness and trust. A decision support system (HACID-DSS) is proposed that is based on structured domain knowledge, semi-automatically assembled in a domain knowledge graph (DKG) from available data sources, such as scientific and gray literature. Given a specific case within the addressed domain, a pool of experts is consulted to (i) extract supporting evidence and enrich it, generating a case knowledge graph (CKG) as a subset of the DKG, and (ii) provide one or more solutions to the problem. Exploiting the CKG, the HACID-DSS gathers the expert advice in a collective solution that aggregates the individual opinions and expands them with machine-generated suggestions. In this way, HACID harnesses the wisdom of the crowd in open-ended problems, relying on a traceable process based on supporting evidence for better explainability. A set of evaluation methods is proposed to deal with domains where ground truth is not available, demonstrating the suitability of the proposed approach in a wide range of application domains. Demonstrations are provided in two compelling case studies contributing to the UN Sustainable Development Goals: crowd-sourcing medical diagnostics and climate services for urban adaptation.