Hybrid and Interpretable Deep neural audio machines
Machine Listening, or AI for Sound, is defined as the general field of Artificial Intelligence applied to audio analysis, understanding and synthesis by a machine. The access to ever increasing super-computing facilities, combined...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SMARTSOUND
Pre Commercialisation of Sound Recognition for Surveillance...
150K€
Cerrado
SCANDLE
acoustic SCene ANalysis for Detecting Living Entities
3M€
Cerrado
TalkingHeads
TalkingHeads Audiovisual Speech Recognition in the wild
183K€
Cerrado
PID2021-125943OB-I00
APRENDIZAJE PROFUNDO SEMI-SUPERVISADO Y MULTI-TAREA PARA PRO...
267K€
Cerrado
TEC2015-69266-P
TECNOLOGIAS DE APRENDIZAJE PROFUNDO APLICADAS AL PROCESADO D...
247K€
Cerrado
VocEmoApI
Voice Emotion detection by Appraisal Inference
150K€
Cerrado
Información proyecto HI-Audio
Duración del proyecto: 59 meses
Fecha Inicio: 2022-10-01
Fecha Fin: 2027-09-30
Líder del proyecto
INSTITUT MINESTELECOM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Machine Listening, or AI for Sound, is defined as the general field of Artificial Intelligence applied to audio analysis, understanding and synthesis by a machine. The access to ever increasing super-computing facilities, combined with the availability of huge data repositories (although largely unannotated), has led to the emergence of a significant trend with pure data-driven machine learning approaches. The field has rapidly moved towards end-to-end neural approaches which aim to directly solve the machine learning problem for raw acoustic signals but often only loosely taking into account the nature and structure of the processed data. The main consequences are that the models are 1) overly complex, require massive amounts of data to be trained and extreme computing power to be efficient (in terms of task performance), and 2) remain largely unexplainable and non-interpretable. To overcome these major shortcomings, we believe that our prior knowledge about the nature of the processed data, their generation process and their perception by humans should be explicitly exploited in neural-based machine learning frameworks. The aim of HI-Audio is to build such hybrid deep approaches combining parameter-efficient and interpretable signal models, musicological and physics-based models, with highly tailored, deep neural architectures. The research directions pursued in HI-Audio will exploit novel deterministic and statistical audio and sound environment models with dedicated neural auto-encoders and generative networks and target specific applications including speech and audio scene analysis, music information retrieval and sound transformation and synthesis.