With the advent of mass-scale digitization of information and virtually limitless computational power, an increasing number of social, information and cyber-physical systems evaluate, support or even replace human decisions using...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ixAutoML
Interactive and Explainable Human-Centered AutoML
1M€
Cerrado
Human Plus
HUMAN Towards expertise in enhanced human technology exper...
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With the advent of mass-scale digitization of information and virtually limitless computational power, an increasing number of social, information and cyber-physical systems evaluate, support or even replace human decisions using machine learning models and algorithms. Machine learning models and algorithms have been traditionally designed to take decisions autonomously, without human intervention, on the basis of passively collected data. However, in most social, information and cyber-physical systems, algorithmic and human decisions feed on and influence each other. As these decisions become more consequential to individuals and society, machine learning models and algorithms have been blamed to play a major role in an increasing number of missteps, from discriminating minorities, causing car accidents and increasing polarization to misleading people in social media. In this project, we will develop human-centric machine learning models and algorithms for evaluating, supporting and enhancing decision making processes where algorithmic and human decisions feed on and influence each other. These models and algorithms will account for the feedback loop between algorithmic and human decisions, which currently perpetuates or even amplifies biases and inequalities, and they will learn to operate under different automation levels. Moreover, they will anticipate how individuals will react to their algorithmic decisions, often strategically, to receive beneficial decisions and they will provide actionable insights about their algorithmic decisions. Finally, we will perform observational and interventional experiments as well as realistic simulations to evaluate their effectiveness in a wide range of applications, from content moderation, recidivism prediction, and credit scoring to medical diagnosis and autonomous driving.