How to make a limb: a new insight using three-dimensional synchrotron palaeohis...
How to make a limb: a new insight using three-dimensional synchrotron palaeohistology
Tetrapods, i.e. four-limbed animals, are the only backboned animals to have truly conquered the land, and have achieved worldwide distribution in a wide range of environments. Several fish groups have attempted to colonise terrest...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BFU2015-70927-R
SINOSTOSIS CRANEALES Y ANALISIS DE REDES ANATOMICAS PARA LA...
73K€
Cerrado
BFU2017-82974-P
MECANISMOS REGULADORES IMPLICADOS EN EL DESARROLLO Y LA EVOL...
163K€
Cerrado
CGL2014-52662-P
EVOLUCION Y DIVERSIDAD HISTOLOGICA, ESTRUCTURAL Y FUNCIONAL...
73K€
Cerrado
CGL2010-16417
EVOLUCION MORFOLOGICA ADAPTATIVA DEL TRACTO DE SALIDA CARDIA...
115K€
Cerrado
PID2020-115854GB-I00
LA EVOLUCION DEL SISTEMA RESPIRATORIO HUMANO (III): RECONSTR...
194K€
Cerrado
CGL2008-00034
EL USO DE TECNICAS 3D PARA EL ESTUDIO DE LA ANATOMIA FUNCION...
62K€
Cerrado
Información proyecto LimbEvolution
Duración del proyecto: 60 meses
Fecha Inicio: 2024-05-07
Fecha Fin: 2029-05-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Tetrapods, i.e. four-limbed animals, are the only backboned animals to have truly conquered the land, and have achieved worldwide distribution in a wide range of environments. Several fish groups have attempted to colonise terrestrial habitats (e.g. mudskippers among ray-finned fish; lungfish among lobe-finned fish) but only tetrapods were able to initiate a large-scale radiation. What is the key to this success? Our limb skeletons have obviously played a crucial part, by allowing us to walk and support our weight outside of the water, but that is not their only function. For example, at some point during the early evolution of tetrapods, the haematopoietic (blood cell-producing) tissue transferred to the bone marrow; it has been suggested that this protected the production of blood cells from UV radiation and made it more efficient. This extraordinary multifunctionality evolved through successive microanatomical innovations, beginning 400 million years ago. The underlying reasons and processes are still unclear, partly because traditional palaeontological techniques have not been able to uncover the crucial changes in 3D microarchitecture from fin to limb. I will overcome these limitations using a novel cross-disciplinary approach based on state-of-the-art, three-dimensional, tomographic imaging techniques at high resolution. I will combine 3D modelling with virtual simulations of biomechanical stress, evidence of biomarkers and functional genomics to provide the first comprehensive picture of three major steps in the limb evolution: 1) the shaping of our limb into three segments, 2) the origin of blood-cell production in limb bones, and 3) the role of ossified mineralised ends in the exceptional locomotor radiations of tetrapods. This project will illuminate the process by which our limb skeletons became, not just structural props and locomotory levers, but essential powerhouses of cell manufacture without which we cannot survive.