How neuronal activity patterns drive behavior novel all optical control and mon...
How neuronal activity patterns drive behavior novel all optical control and monitoring of brain neuronal networks with high spatiotemporal resolution
When we see an object, hear a sound or smell an odor, precise spatial and temporal patterns of electrical activity are generated within neuronal networks located in specialized brain areas. This electrical representation of the ex...
When we see an object, hear a sound or smell an odor, precise spatial and temporal patterns of electrical activity are generated within neuronal networks located in specialized brain areas. This electrical representation of the external stimulus mediates perception and sensory experience. However, this process is highly variable, and repetition of the very same sensory experience results in distinct network activity patterns. What does this variability mean for perception? Do distinct activity patterns carry different information about the stimulus? Or rather, does the brain code the same information coming from the outside world in multiple and equivalent ways? Answering these questions and determining how patterns of activity in neuronal populations are used for behavior has not been possible because of the inability to change the activity of neurons with single cell precision over large networks in an intact mammalian brain. In this ambitious proposal we will take a multidisciplinary approach to causally address these questions and decipher the computational principles of brain networks. To achieve this goal we will develop innovative optical technologies for manipulating and monitoring brain circuits with single cell resolution in the intact mouse brain. We will combine these new techniques with novel genetic manipulations and psychophysical behavioral methods that allow precise quantification of animals’ perceptual performance. Using this unique set of tools, we will unravel how the spatial (across neurons) and temporal (across time) aspects of neuronal electrical activity patterns encode information that guides behavior. In achieving our goals we will produce a new technology for stimulating and monitoring neurons in the brains of behaving animals with single-cell specificity that can be adapted to explore cellular dynamics in highly scattering biological media.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.