How Much Is It? The Pre-Modern Philosophical Outset of the Algebraic Variable
MUCH delves into the crucial and still vastly understudied interplay between mathematics and philosophy in the 14th c., shedding light on pre-modern questions that resonate with ongoing concerns on mathematical knowledge, abstract...
ver más
Descripción del proyecto
MUCH delves into the crucial and still vastly understudied interplay between mathematics and philosophy in the 14th c., shedding light on pre-modern questions that resonate with ongoing concerns on mathematical knowledge, abstraction, and reality. What is the link between calculation and the conception of a quantified item? How do we think of a quantifiable unknown in equations? The case of 14th-c. Italy is key to grasp the emergence of such problems, their development and cascade-effect on European mathematics of the following centuries. MUCH unravels the feedback loop between philosophical notions and processes involved in mathematical practices, prominently algebra: quantum, inquantum, and variable in equations. Rooted in pre-modern notions of extension, quantum represents an existing quantified substance, while the variable (i.e., unknown value) stands as a neither continuous nor discrete thing that can be quantified. Inquantum is the specific epistemic process connecting quantum and the variable: a layered abstraction that allows mathematical properties to be distilled from non-mathematical ones. For the first time, MUCH implements a careful study, connecting pre-modern texts and actors from different institutional and professional settings (universities, religious and merchant schools). By intertwining historical contexts, MUCH disentangles how quantum’s and inquantum’s philosophical underpinnings paved the way for Ch’s mathematical application, contributing to a more comprehensive understanding of the pre-modern scientific thought. MUCH’s leading-edge hypothesis has the broader academic goal of bridging the research fields of history of mathematics and philosophy, deepening our comprehension of historical mathematical development but also emphasizing the inseparable relationship between philosophical inquiry and scientific progress.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.