How do drug-associated contexts drive behaviour? The role of entorhinal circuit...
How do drug-associated contexts drive behaviour? The role of entorhinal circuitry in addiction
Addiction to drugs is a ubiquitous neuropathological disease that inflicts immense societal costs. A core aspect of addiction that poses a major challenge for treatment is the propensity to relapse in environmental contexts that a...
ver más
Descripción del proyecto
Addiction to drugs is a ubiquitous neuropathological disease that inflicts immense societal costs. A core aspect of addiction that poses a major challenge for treatment is the propensity to relapse in environmental contexts that are associated with drug use. Identification and mechanistic characterization of novel addiction-relevant circuitry linking the motivation to take drugs to the complex spatial and non-spatial features that constitute a drug-associated context are at the core of this proposal. These insights will be used to identify the best constellation of anatomical targets to prevent and reverse the expression of context-triggered drug-seeking. The medial and lateral entorhinal cortex (MEC and LEC) are two central components of the episodic memory system integrating all features relevant for the formation of contextual memory. Crucially, MEC and LEC receive strong bottom-up dopaminergic input from the midbrain and send top-down projections to the nucleus accumbens (NAc). The dopaminergic system is the primary target of all addictive drugs. We will 1) study how bottom-up dopaminergic projections are implemented into drug-context associations in MEC and LEC and 2) determine how these associations influence NAc-mediated drug-seeking behaviour. We will utilize a multidisciplinary approach by developing electrophysiological in vivo recording paradigms in behaving mice that allow the assessment of complex spatial, contextual and non-spatial codes in conditioned place preference and self-administration paradigms typically used to model addiction in rodents. This will be combined with optogenetically-assisted circuit analysis of molecularly-defined pathways to link identified functions to the underlying circuitry. Pathway-specific optogenetic silencing will be used to prevent and reverse the manifestations of drug use on a neuronal and behavioural level. This will guide the evidence-based development of therapies in the future, such as deep-brain stimulation.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.