The aim is to develop an emerging field of complex analysis and geometry focused on holomorphic partial differential relations (HPDR). Such a relation of order r is given by a subset of the manifold of r-jets of holomorphic maps b...
The aim is to develop an emerging field of complex analysis and geometry focused on holomorphic partial differential relations (HPDR). Such a relation of order r is given by a subset of the manifold of r-jets of holomorphic maps between a pair of complex manifolds, and the main question is when does a formal solution lead to an honest analytic solution. This complex analogue of Gromov’s h-principle is highly important but poorly understood. The project will focus on the following problems.(A) Oka theory concerns the existence and approximation of holomorphic maps from Stein manifolds to complex manifolds, corresponding to HPDRs of order zero. The central notion of Oka theory is Oka manifold; this is a complex manifold such that the h-principle holds for maps from any Stein manifold into it. Recently developed techniques give a promise of major new developments on Oka manifolds and their applications to a variety of problems in complex geometry. (B) Open first order HPDRs. Oka-theoretic methods will be applied in problems concerning holomorphic immersions and locally biholomorphic maps. (C) First order HPDRs defined by analytic varieties in the jet bundle. Application of Oka-theoretic methods in holomorphic directed systems, with emphasis on complex contact manifolds and holomorphic Legendrian curves.(D) Applications of Oka theory to minimal surfaces. Development of hyperbolicity theory for minimal surfaces. The Calabi-Yau problem for minimal surfaces in general Riemannian manifolds. Study of superminimal surfaces in self-dual Einstein four-manifolds via the Penrose-Bryant correspondence. These closely interrelated topics embrace major open problems in three fields, with diverse applications.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.