Holomorphic Blocks in Quantum Field Theory New Constructions of Exact Results
A central challenge in theoretical physics is to develop non-perturbative or exact methods to describe quantitatively the dynamics of strongly coupled quantum fields. This proposal aims to establish new exact methods for the study...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QuantumSupersymmetry
Quantum aspects of extended supersymmetric gauge theories
15K€
Cerrado
QICFT
Quantum Integrability Conformal Field Theory and Topologica...
347K€
Cerrado
QUANTUMSUPERSYMMETRY
Quantum aspects of extended supersymmetric gauge theories
163K€
Cerrado
GenGeoHol
Non AdS holography and generalized geometric structures
1M€
Cerrado
SUSY
SUPERSYMMETRY a window to non perturbative physics
2M€
Cerrado
FIS2011-22566
INTEGRABILIDAD Y SUPERINTEGRABILIDAD EN SISTEMAS CLASICOS Y...
42K€
Cerrado
Información proyecto HBQFTNCER
Duración del proyecto: 71 meses
Fecha Inicio: 2015-03-13
Fecha Fin: 2021-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A central challenge in theoretical physics is to develop non-perturbative or exact methods to describe quantitatively the dynamics of strongly coupled quantum fields. This proposal aims to establish new exact methods for the study of supersymmetric quantum field theories thereby unveiling new integrable structures and fostering new correspondences and dualities. We will develop a new cut-and-sew formalism to compute partition functions and expectation values of observables of supersymmetric gauge theories on compact manifolds through the gluing of a fundamental set of building blocks, the holomorphic blocks. The decomposition of partition functions into holomorphic blocks corresponds to
the geometric decomposition of compact manifolds into standard simpler pieces. Similarly the gluing rules for the holomorphic blocks correspond to the geometric gluing rules. The key insight required to exploit the holomorphic block formalism is the deep connection between supersymmetric gauge theories and low dimensional exactly solvable systems such as 2d CFTs, TQFTs and spin chains. Two and four dimensional holomorphic blocks can be reinterpreted as conformal blocks in Liouville theory through an established correspondence between supersymmetric gauge theories and Liouville theory. We will provide a similar realisation of three and five dimensional holomorphic blocks in a new theory,
a q-deformed version of Liouville theory where the Virasoro algebra is replaced by the q-deformed Virasoro algebra.
We will develop this theory classifying the symmetries of correlation functions. These symmetries will be realised as gauge theory dualities, while the language of the q-deformed Liouville theory will become a new powerful tool to investigate supersymmetric gauge theories.