High-throughput combinatory drugs testing on in vitro 3D cells model platform
Drug combinations can lead to the discovery of novel drugs by increasing efficacy or lowering toxicity through synergy. This can boost existing drugs, rescue drug candidates, and accelerate drug discovery for yet poorly addressed...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PCI2024-153423
Herramientas diagnósticas, pronósticas y terapéuticas
315K€
Cerrado
EQC2018-004849-P
Adquisición de un equipo de MicroScale Thermophoresis para l...
118K€
Cerrado
DrugSynergy
DrugSynergy A data driven systems biology approach to optim...
150K€
Cerrado
REMATCH
Image based analysis for drug discovery and repurposing
150K€
Cerrado
PTQ2021-011961
Development of a novel drug screening platform to identify s...
115K€
Cerrado
PTQ-13-05861
Proyecto DynAppHTM. Aplicación de Nuevas Tecnologías Bioanal...
44K€
Cerrado
Información proyecto SYNEBIO
Duración del proyecto: 20 meses
Fecha Inicio: 2022-10-07
Fecha Fin: 2024-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Drug combinations can lead to the discovery of novel drugs by increasing efficacy or lowering toxicity through synergy. This can boost existing drugs, rescue drug candidates, and accelerate drug discovery for yet poorly addressed diseases. However, predicting synergy is difficult, and finding synergies requires high-throughput screening (HTS) in advanced cell models. Current solutions propose either HTS in 2D cell cultures or low throughput assays in 3D cell cultures, but not both.
On the basis of a technology developed in the ERC-funded AbioEvo project, we devised an innovative microfluidic platform for 3D culture and HTS of drug combinations. Miniaturization densifies routine 3D assays, resulting in a throughput increase of 10 to 100 times. Fluidic automation reduces liquid handling 500 times for a 100x100 drug library at a 10-point dose-response combinatorial screening. Furthermore, 3D culture models better predict later physiological responses, thus increasing the success probability of downstream drug development stages. We have shown dose-response measurements of 144 antibiotic combinations on bacteria on a single chip.
In this POC, we aim to demonstrate the applicability of our technology to human cells and benchmark it based on existing screens for breast cancer cells. We will adapt the cell culture conditions and data analysis, perform market analysis, and examine industrialization feasibility. This will put us in a position to create a spin-off to reach the preclinical drug screening market and identify the most promising therapeutic areas. Indeed, the technology has the potential to screen for synergistic drug combinations at an earlier stage of the drug discovery process (thanks to miniaturization and automation) while providing a more reliable cellular response for later stages (thanks to 3D culture).