High-performance adsorbents based on robust bijels stabilized by cellulose nanoc...
High-performance adsorbents based on robust bijels stabilized by cellulose nanocrystals for direct air capture of CO2
Direct air capture (DAC) has established itself as a promising technology to lower the atmospheric CO2 concentration permanently, thus contributing to climate change mitigation. Considering the billion tons of CO2 that need to be...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2013-45071-R
NUEVOS MATERIALES PARA CAPTURA DE CO2. MEMBRANAS POLIMERICAS...
79K€
Cerrado
CAPZEO
Microscopic investigations of CO2 capture and scattering on...
220K€
Cerrado
PARIS
Porous poly(ionic liquid)s for CO2 capture and simultaneous...
2M€
Cerrado
MATESA
Advanced Materials and Electric Swing Adsorption Process for...
6M€
Cerrado
HY-CAT
Multifunctional Hybrid Platforms based on Colloidal Nanocrys...
1M€
Cerrado
Información proyecto HANDLECO2
Duración del proyecto: 26 meses
Fecha Inicio: 2023-03-29
Fecha Fin: 2025-06-14
Líder del proyecto
STOCKHOLMS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
223K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Direct air capture (DAC) has established itself as a promising technology to lower the atmospheric CO2 concentration permanently, thus contributing to climate change mitigation. Considering the billion tons of CO2 that need to be captured, high-performance chemisorbents from the most abundant natural polymer, i.e., cellulose, are of great significance for the practical application of such negative emission technology. The main objective of HANDLECO2 is to construct high-performance cellulosic DAC chemisorbents based on robust bijels, which is an emerging class of soft solid materials with interconnected hierarchical pore networks and semi-permeable interfacial layers. Cellulose nanocrystals (CNCs) with surface-immobilized 10-undecenoyl groups will be synthesized and then modified by clickable poly(ionic liquid)s (PILs) via simple thiol-ene click chemistry. The surface chemistry of PILs-modified CNCs will further be tuned by simple counterion exchange method. Next, the applicant will fabricate bijels of high stability by new methods to crosslink the CNCs with designed surface chemistry at the fluid-fluid interface. The robust bijels stabilized by CNCs will then be processed into aerobijels via simple freezing-drying. The numerous accessible amine groups on CNCs in combination with the bicontinuous porous structure and semipermeable interfacial layers of the final aerobijels will allow for high CO2 adsorption capacity and fast CO2 adsorption kinetics. The conceptualization of HANDLECO2 is based on the two-way transfer of knowledge between the host and researcher, and research objectives will be achieved through this knowledge transfer. This fellowship will offer an invaluable opportunity to reach the applicant’s career goal of leading his own independent research group in Europe academia. Moreover, the success of HANDLECO2 will undoubtedly lead to multiple positive impacts that will strengthen European excellence and competitiveness.