Highly Ethanol-Selective Electrocatalytic CO2 Reduction Enabled by Site-Specific...
Highly Ethanol-Selective Electrocatalytic CO2 Reduction Enabled by Site-Specific Heteroatoms Doped Single Atom Catalysts Supported Cu Clusters
Electrochemical CO2 reduction reaction (CO2 RR) driven by renewable power is a promising way to convert CO2 to fuels and chemicals, which has been proposed as a sustainable process for the artificial carbon cycle. Among all produc...
Electrochemical CO2 reduction reaction (CO2 RR) driven by renewable power is a promising way to convert CO2 to fuels and chemicals, which has been proposed as a sustainable process for the artificial carbon cycle. Among all products, ethanol (C2H5OH) has received extensive attention because it can be directly used as fuel in internal combustion engines and industrial power generation. Cu-based catalysts can efficiently promote C-C coupling toward C2+ products in CO2 RR. However, most Cu-based catalysts still show an insufficient selectivity for C2H5OH (<50 %) due to unfavorable adsorption of several oxygen-containing key intermediates, which cannot achieve its commercial value. As a frontier in materials science, single-atom motifs anchored on N-doped C support (carbon-based SACs), are widely investigated due to their maximum atom-utilization efficiency and highly metal dispersion. Especially, in the field of eCO2 RR, compared to the pure N-C, SACs exhibit an excellent CO selectivity because of the easily optimized coordination environment along with a reconstructed structure. Therefore, combining SACs with Cu-based catalysts in the proper configuration can increase the local CO concentration near Cu-based materials at a low overpotential where Cu alone would be incapable of doing the CO2-to-CO conversion. Meanwhile, the moderate electron-donating ability of SACs will further stabilize the oxygenic C2 intermediate to make the hydrogenation pathway toward C2H5OH production more favorable. As a result, the objective of this project is to design a carbon-based SACs supported Cu clusters architecture by a chemical in-situ growth process to let it serve as a high-efficient catalyst for achieving a high C2H5OH selectivity (> 75 %) at a low overpotential (< 800 mV). This project will set the scene for the fabrication of highly efficient and commercially available electrodes for the eCO2 RR to production of C2H5OH.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.