Highly Accurate Molecular Properties using variational Quantum Electrodynamics
Quantum chemical calculations are today in a position where they not only assist, but may also challenge experiment, at least for molecules containing light atoms only. When heavy atoms are present, achieving the same accuracy bec...
ver más
Descripción del proyecto
Quantum chemical calculations are today in a position where they not only assist, but may also challenge experiment, at least for molecules containing light atoms only. When heavy atoms are present, achieving the same accuracy becomes more challenging, not only because of relativistic effects, but also because the larger number of electrons and the often complicated electronic structures make the electron correlation problem harder. When surveying the physics that has to be included in order to establish a reliable computational protocol for heavy-element chemistry, the role of quantum electrodynamics (QED) should at least be considered. Studies so far indicate that QED-effects reduce relativistic effects by about 1%. However, such investigations have been mostly limited to valence properties, since there are currently no reliable tools for general molecules to study the core region where the QED-effects are generated. The HAMP-vQED project aims to fill this gap by providing a computational machinery allowing highly accurate calculations of molecular properties, with particular focus on properties that probe electron density in the core region, such as NMR parameters. I insist on a variational approach to QED using the local, finite basis sets of quantum chemistry. In short, I want to do QED without diagrams. This allows me to verify the domain of validity of currently used effective QED-potentials and provide a more consistent formulation of relativistic quantum mechanics. QED has been called the last train from physics to chemistry. The HAMP-vQED project provides a train back to physics in the form of highly accurate calculations which, combined with experiment, will allow the exploration of nuclear structure, the standard model of the universe and beyond. An even more tantalizing perspective is that such a variational scheme to QED may inspire progress in other quantum field theories, such as quantum chromodynamics, where perturbation theory is more problematic.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.