High-dimensional electrical stimulation for visual prosthesis
Future advanced neuroprostheses will need to transfer orders of magnitude more information to the brain than currently possible. This is most urgently needed in visual prostheses. Improving the electrode count will be part of the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NeuraViPeR
Neural Active Visual Prosthetics for Restoring Function
4M€
Cerrado
PID2019-110410RB-I00
IMPLANTE MILIMETRICO CON INTELIGENCIA ARTIFICIAL INTEGRADA P...
138K€
Cerrado
Outer-Ret
Non-invasive patterned electrical neurostimulation of the re...
3M€
Cerrado
SAF2008-03694
NUEVOS DISPOSITIVOS DE REHABILITACION VISUAL
121K€
Cerrado
BRAIN MICRO SNOOPER
A mimetic implant for low perturbation stable stimulation a...
1M€
Cerrado
eAXON
Electronic AXONs wireless microstimulators based on electro...
2M€
Cerrado
Información proyecto HYPERSTIM
Duración del proyecto: 53 meses
Fecha Inicio: 2022-05-30
Fecha Fin: 2026-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Future advanced neuroprostheses will need to transfer orders of magnitude more information to the brain than currently possible. This is most urgently needed in visual prostheses. Improving the electrode count will be part of the solution: a next generation of visual prosthesis will most probably be based on the insertion of over 1000 microelectrodes in the visual cortex. Still, current visual prostheses use very simple stimulation patterns, in which at most the stimulation amplitude is modulated.
We propose to explore a second, complementary approach to brute scaling: using the available electrodes more efficiently by applying sophisticated stimulation protocols. Our main objective is to achieve a fundamental breakthrough in the spatial resolution of electrical brain stimulation to restore vision, obtaining a resolution of at least 20X the number of electrodes that are physically present.
The vast number of possible stimulation combinations calls for a radically new research methodology, integrating modeling and state-of-the-art neuroscience methods at every spatial scale (from single neurons to the entire brain) in a closed-loop optimization process. With this combination of techniques, we will study which stimulation patterns effectively induce sufficient neural activations in higher areas (i.e. ignition) and cause visual perceptions. Thus, we will be able to explore the vast, hyperdimensional search space of possible stimulation patterns, and produce a set of in vivo tested stimulation patterns that are capable of eliciting distinguishable physiological and behavioral responses.
The obtained order-of-magnitude improvement in resolution will spur the development of breakthrough prostheses that will be widely adopted by blind patients, and bring the field of neural interfacing to the next level.