High throughput Discovery of Catalysts for the Hydrogen Economy through Machine...
Hydrogen energy storage offers a unique combination of scalability, long-term storage, and portability, leading to the so-called hydrogen economy. The major challenge in the hydrogen economy is related to the production of hydroge...
Hydrogen energy storage offers a unique combination of scalability, long-term storage, and portability, leading to the so-called hydrogen economy. The major challenge in the hydrogen economy is related to the production of hydrogen from water and the generation of energy by the oxidation of hydrogen into water. In this regard, the main objective of the project High-throughput Discovery of Catalysts for the Hydrogen Economy through Machine Learning (HighHydrogenML) is to develop a high-throughput strategy based on first principles calculations and artificial intelligence tools to discover intermetallic compounds whose catalytic activity can be tuned to reach an optimum catalytic performance for the Hydrogen Evolution Reaction (HER) and Oxygen Reduction Reaction (ORR) by means of elastic strain engineering. The successful completion of these objectives will provide unique information for experimental synthesis of intermetallic compounds with high catalytic activity for the HER and ORR and could, therefore, open a new avenue for a feasible and efficient hydrogen economy. Moreover, the strategies and tools developed in this project can be applied later to many other catalytic processes of large industrial and/or environmental interest. To achieve these goals, the project HighHydrogenML involves multidisciplinary expertise in solid state physics, materials science, machine learning, and chemistry that will be coupled in a seamless framework to exploit the high predictive power of ab initio calculations in conjunction with the efficiency of ML models. Therefore, this project brings together a researcher with expertise in atomistic and materials modelling within a broad range of different computational chemistry methods and artificial intelligence techniques, a world-recognized supervisor in the area of multiscale modelling of materials, and a research institute with a record of excellence, technology transfer, and top-level training in Materials Science and Engineering.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.