High throughput 4D imaging for nanoscale cellular studies
Fluorescence microscopy is an invaluable tool for exploring the structure and function of biological processes. It provides high specificity and contrast for the observation of cellular components tagged with fluorescent molecules...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2019-005932-P
SISTEMA DE MICROSCOPÍA DE SUPER-RESOLUCIÓN MEDIANTE LOCALIZA...
258K€
Cerrado
EQC2018-004333-P
Nanoscopio de súper-resolución con capacidades multidimensio...
630K€
Cerrado
VisuLive
Quantitative Nanoscale Visualization of Macromolecular Compl...
2M€
Cerrado
IMAGINDNA
Advanced DNA imaging improving spatial resolution and contr...
100K€
Cerrado
NanoCellActivity
Nanoscale live cell activity sensing using smart probes and...
1M€
Cerrado
EQC2018-004675-P
ADQUISICIÓN DE UN MICROSCOPIO CONFOCAL SPINNING DISK PARA...
155K€
Cerrado
Información proyecto NANO4LIFE
Duración del proyecto: 74 meses
Fecha Inicio: 2019-10-02
Fecha Fin: 2025-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Fluorescence microscopy is an invaluable tool for exploring the structure and function of biological processes. It provides high specificity and contrast for the observation of cellular components tagged with fluorescent molecules in a minimally invasive fashion, allowing the study of live specimens. Furthermore, the development of super resolution (SR) fluorescence microscopy has unlocked the access to spatial resolutions beyond the diffraction limit of visible light (~250nm), fuelling the discovery of new biological structures and dynamics.
Nevertheless, achieving resolutions below ~10nm is challenged by multiple trade-offs between spatial and temporal resolutions, depth of observation and photo toxicity, making it difficult or impossible to obtain a molecular resolution. Additionally, axial resolutions are inevitably poorer than lateral ones, unless utilizing a complex multi-objective lens approach.
I recently developed MINFLUX, a localization technique that merges concepts of SR with information theory. It achieves isotropic nanometer resolution in three dimensions with a single objective lens and has unrivaled spatio temporal resolution.
However, a platform that enables these capabilities in a high-throughput manner for entire cells and tissue has not yet been developed. I aim to fill this technological gap; with my background and experience, I am in a unique position to assure the success of this project and establish these technologies in the scientific community. The performance of fluorescence imaging and tracking will progress orders of magnitude in the years to come, signaling yet another revolution for optical nanoscopy.