High speed Deformation and Failure of Materials at the Nanometer Scale
For a sustainable economy, it is paramount to create robust, durable products. In the case of mobile phone displays, cutting tools and other products subjected to impact loading, this means finding ways to avoid brittle failure at...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
HIGHTEMPPROP
High Temperature Nanoindentation and Micropillar Compression...
130K€
Cerrado
DPI2013-41954-P
DESARROLLO DE COMPONENTES MECANICOS DE ESTRUCTURA SUBMICROME...
157K€
Cerrado
MAT2012-31889
ENSAYOS NANOMECANICOS DE SOLIDOS DE ALTA RESISTENCIA A ALTA...
97K€
Cerrado
MAT2010-17958
MATERIALES FUNCIONALES PROCESADOS POR SPD Y SU CARACTERIZACI...
120K€
Cerrado
PGC2018-095400-B-I00
COMPORTAMIENTO EN FRACTURA DE MATERIALES COMPUESTOS NANO-REF...
61K€
Cerrado
Información proyecto NanoHighSpeed
Duración del proyecto: 68 meses
Fecha Inicio: 2020-08-26
Fecha Fin: 2026-04-30
Líder del proyecto
UNIVERSITAET KASSEL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
For a sustainable economy, it is paramount to create robust, durable products. In the case of mobile phone displays, cutting tools and other products subjected to impact loading, this means finding ways to avoid brittle failure at high stain rates. This is currently difficult, since little to no fundamental understanding of the deformation mechanisms at high strain rates exists. This is largely owing to the fact that no methods are available for nanoscale investigations. By developing nanoindentation into a new tool for high strain rate testing, we will achieve a groundbreaking improvement of the spatial resolution of high strain rate mechanical testing by 10^6. This extraordinary improvement will be possible through simultaneous advances in hardware and experimental methods.
This new nanoscale approach will enable a breakthrough in the fundamental understanding of the mechanical behavior of materials at high strain rates down to their constituent microstructural elements. We will isolate single grain boundaries and measure their individual contribution to strength and embrittlement as a function of strain rate, crystal structure and grain boundary energy. The local resistance to dislocation transmission, migration and fracture will be correlated to the overall Hall-Petch strengthening behavior of the polycrystal. The payoff will be a better understanding and predictability of embrittlement events at high strain rates.
A second breakthrough will be made possible in understanding the interplay between plasticity and brittle fracture at high strain rates in some of the technologically most important hard coatings, including toughened glass used in mobile phone screens and TiAlN based coatings, commonly used in tooling. We will examine the recent hypothesis of a possible regain in ductility and systematically investigate the influence of the microstructure and residual stress. This will open up new paths for optimizing the durability of future coating systems.