High power low noise ultrafast tunable laser sources using supercontinuum gene...
High power low noise ultrafast tunable laser sources using supercontinuum generation
This proposal aims to research and develop a novel tunable ultrafast pulse laser source for use in biomedical applications. Covering the wavelength range from 400 nm to over 1650 nm, and delivering compressed pulses as short as su...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal aims to research and develop a novel tunable ultrafast pulse laser source for use in biomedical applications. Covering the wavelength range from 400 nm to over 1650 nm, and delivering compressed pulses as short as sub-30 fs, the realisation of such a laser source will advance the state-of-the-art by achieving the combination of two key features, high-power and low-noise, which is not achievable using other current approaches. The research approach is to exploit the latest developments in solid-state lasers combined with recent advances in fiber technologies providing a new high-performance architecture. Saturable semiconductor absorber devices acting as nonlinear mirrors (SESAMs) will mode-lock an efficient solid-state ultrafast oscillator to provide compact, robust, low-noise, multi-Watt level seed pulses. Broadband tunability will be obtained via supercontinuum generation in novel microstructured fibers. This new architecture combines synergistically the skills of the host institute (stable SESAM-based lasers) and the researcher (ultrashort pulse generation, manipulation, and control). Within the project, I plan to explore biomedical applications of this novel laser technology in microscopy imaging, nanosurgery, and dentistry in collaboration with international EU partners. These laser sources are likely to have many additional applications outside of the biomedical market. The work will be performed by a researcher from USA with more than 10 years of experience in ultrafast lasers; the last 4 years were with the Ultrafast group at Coherent Inc., an established world leading commercial supplier of ultrafast lasers, and previously 5 years within the College of Optics - CREOL, in the internationally-recognized group of Prof Peter Delfyett. The researcher will be hosted by Time-Bandwidth Products AG at Zurich, Switzerland, a pioneering SME in robust, reliable, high-power, low-noise SESAM mode-locked ultrafast solid-state lasers.