With Deep Learning becoming ubiquitous in our life, running Deep Learning algorithms in real time on an heterogeneous set of hardware platforms is a pressing need in many aspects of our society. While traditional workflows based o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-097088-B-C33
ACELERADORES HARDWARE PARA REDES DE APRENDIZAJE PROFUNDO DE...
79K€
Cerrado
Reexen
Ultra low cost ultra high efficiency AI processor for enab...
71K€
Cerrado
CoSpiN
Coherent Spintronic Networks for Neuromorphic Computing
1M€
Cerrado
Hailo-8
End to end hardware implementation of Artificial Neural Netw...
3M€
Cerrado
MeM-Scales
Memory technologies with multi scale time constants for neur...
4M€
Cerrado
SEA2Learn
SElf-Adaptive and Automated LEARNing Framework for Smart Sen...
176K€
Cerrado
Información proyecto hls4ml
Duración del proyecto: 18 meses
Fecha Inicio: 2021-03-17
Fecha Fin: 2022-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With Deep Learning becoming ubiquitous in our life, running Deep Learning algorithms in real time on an heterogeneous set of hardware platforms is a pressing need in many aspects of our society. While traditional workflows based on standard CPUs and GPUs are established, Deep Learning inference on low-power devices (e.g., cars, smart phones, watches, etc) is gaining more attention. Typically, this would require strong background in electronic engineering to convert a neural network into a Digital Signal Processor. We propose to develop a complete open-software library to automatically convert Deep Neural Networks to electronic circuits, using High Level Synthesis tools. With a large basis of potential applications (e.g., autonomous cars, medical devices, portable monitoring devices, custom electronics as in the real-time data processing system of large-scale scientific experiments, etc.), the hls4ml library would assists users by automatising the logic circuit design as well as by reducing resource utilisation while preserving accuracy.