HIGH FIDELITY LES DNS DATA FOR INNOVATIVE TURBULENCE MODELS
The most significant challenge in applied fluid dynamics (covering aerospace, energy and propulsion, automotive, maritime industries, chemical process industries) is posed by a lack of understanding of turbulence-dependent feature...
ver más
Duración del proyecto: 43 meses
Fecha Inicio: 2019-05-06
Fecha Fin: 2022-12-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
4M€
Descripción del proyecto
The most significant challenge in applied fluid dynamics (covering aerospace, energy and propulsion, automotive, maritime industries, chemical process industries) is posed by a lack of understanding of turbulence-dependent features and laminar-to-turbulent transition. As a consequence, the design and analysis of industrial equipment cannot be relied upon to be accurate in challenging flow conditions. Improving the capabilities of models for complex fluid flows, offers the potential of reducing energy consumption of aircraft, cars, and ships, with consequent reduction in emissions and noise of combustion-based engines The inevitable result is a major impact on economical and environmental factors as well as on economy, industrial leadership in the highly competitive global position. Hence, the ability to understand, model and predict turbulence and transition phenomena is the key requirement in the design of efficient and environmentally acceptable fluids-based energy transfer systems. Against this background, the present proposal sets out a highly ambitious and innovative program of work designed to address some influential deficiencies in advanced statistical models of turbulence. The program rests on the following pillars of excellence: • The exploitation of high-fidelity LES/DNS data for a range of -reference flows that contain key flow features of major interest • The application of novel artificial intelligence and machine-learning algorithms to identify significant correlations between representative turbulent quantities • The guidance of the research towards improved models by four world-renown industrial and academic experts in turbulence. The consortium is formed by major industrial aeronautical companies and software editor, an SME acting as coordinator, well-known research centra and academic groups, including ERCOFTAC, acting as a source of turbulence expertise and as a repository for the generated data, to be made openly available.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.