Higgs bundles Supersymmetric Gauge Theories and Geometry
String theory provides a unified description of particle physics and gravity, within a consistent theory of quantum gravity. The goal of this research is to develop both the phenomenological implications as well as conceptual foun...
String theory provides a unified description of particle physics and gravity, within a consistent theory of quantum gravity. The goal of this research is to develop both the phenomenological implications as well as conceptual foundations of string theory and its non-perturbative completions, M- and F-theory. Both, seemingly independent, questions are deeply connected to a mathematical structure, the Higgs bundle, which characterizes supersymmetric vacua of dimensionally reduced gauge theories, and insights into the moduli space of Higgs bundles will result in a fruitful cross-connection between these subjects.
For string theory to engage in a meaningful dialog with particle physics, it is paramount to gain a universal understanding of the low energy effective theories that can arise from it. Building on the success of studying F-theory vacua in terms of Higgs bundles, we propose to develop the Higgs bundle approach for M-theory on G2-manifolds, leading to a universal characterization of the low energy physics. Methods developed for Higgs bundles of d = 3 N = 2 theories obtained from M5-branes on three-manifolds will be used in this process. Associated to each Higgs bundle is a local G2 manifold and we propose a way (using new results in geometry) to construct compact G2 spaces associated to these, which manifestly ensure the phenomenological soundness of the compactifications.
Higgs bundles have recently also played a key role in studying the compactifications of the M5-brane in M-theory. We propose and develop a new duality between a d = 4 theory on a four-manifold X4 and a d = 2, N = (2,0) supersymmetric gauge theory on a two-sphere S2, obtained by considering the M5-brane theory on X4xS2. The supersymmetric vacua have a characterization in terms of Higgs bundles, which can be studied with tools developed for F- theory Higgs bundles on four-manifolds. Furthermore we propose a concrete approach to derive this duality from first principles.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.