Chirality plays a major role in several areas due to the different behavior of each enantiomeric form of a compound, critical in the pharmaceutical industry. Obtaining pure enantiomers is one of the most difficult challenges, in w...
Chirality plays a major role in several areas due to the different behavior of each enantiomeric form of a compound, critical in the pharmaceutical industry. Obtaining pure enantiomers is one of the most difficult challenges, in which homogeneous asymmetric catalysis has achieved significant steps. Now it is time to undertake the challenge by heterogeneous enantioselective catalysis, implying great advantages in terms of sustainability, and offers further opportunities for in-depth understanding of mechanisms at the molecular level, relevant in multidisciplinary fields. However, successful design of such processes requires understanding and control of all relevant steps, which requires well-defined catalysts designed at atomic level. A new class of atomically precise nanomaterials that offers ample opportunities to explore chirality at the fundamental level, are the monolayer protected metal nanoclusters, which exhibit unexpected catalytic and intrinsically chiral properties. The HAND project aims to tackle actual challenges in heterogeneous asymmetric catalysis and achieve enantioselectivity with chiral nanoclusters on surfaces designed at atomic level. After creating chiral clusters active in homogeneous asymmetric reactions, we will control their immobilization on the support surface and their chiral properties. Such atomically precise chiral surfaces will allow us to overcome sensitivity barriers of available chiral spectroscopic techniques, improving studies of chirality at surfaces. Finally, having a well-defined chiral surface, asymmetric/enantioselective model reactions will be explored, aiming to obtain pure enantiomers. Each process step by itself represents a novel pioneering work in the field of nanoclusters and asymmetric catalysis, so far mostly unexplored. The fabrication and understanding of such a new class of chiral surfaces at the atomic level represent a breakthrough in knowledge relevant for materials science, nanotechnology and medicine.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.