Heat in the driver’s seat: unlocking the full potential of pulsed photothermal c...
Heat in the driver’s seat: unlocking the full potential of pulsed photothermal catalysis
The climate catastrophe urgently calls for greening and intensifying chemical reactors. Most chemical reactors use catalysts to speed up reactions, but their operation at steady-state temperature impairs rate, selectivity, and ene...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PATHWAYS
Photoinduced ultrafast carriers and thermal effects within m...
176K€
Cerrado
CTQ2017-89443-C3-1-R
CATALIZADORES MULTICOMPONENTE Y TANDEM APLICADOS EN REACCION...
136K€
Cerrado
CTQ2015-64669-P
DISEÑO COMPUTACIONAL DE CATALIZADORES AVANZADOS: NANOPARTICU...
62K€
Cerrado
CLEANH2
Chemical Engineering of Fused MetalloPorphyrins Thin Films f...
2M€
Cerrado
UNCA15-CE-3189
SISTEMA INTEGRADO PARA LA EVALUACIÓN DE CATALIZADORES EN PRO...
196K€
Cerrado
DynaMMO
Tackling limitations of future relevant thermo-chemical reac...
2M€
Cerrado
Información proyecto HEATPULSE
Duración del proyecto: 62 meses
Fecha Inicio: 2023-12-11
Fecha Fin: 2029-02-28
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
The climate catastrophe urgently calls for greening and intensifying chemical reactors. Most chemical reactors use catalysts to speed up reactions, but their operation at steady-state temperature impairs rate, selectivity, and energy efficiency. To go beyond these limitations, applying short heat pulses theoretically leads to >100× higher reaction yield, lower energy use, and a controlled product distribution. However, pulsed heating has remained out of reach because it is hard to heat catalysts selectively and fast enough.
I break this paradigm and take control of dynamic thermo-catalysis by using light pulses and robust plasmonic materials that convert light to heat with nanoscale specificity. HEATPULSE comprises three work packages that tackle three challenges: (1) kinetics: modulate pulse timing for controlling reaction rate and selectivity, (2) localization: confine heat at thermal hotspots to boost energy efficiency, and (3) stability and performance: access high peak reaction rates by developing temperature-stable pulsed photocatalysts.
Ground-breaking innovations: (1) Access to a normally unreachable reaction landscape, with dynamic tunability of catalyst activity and selectivity; (2) Thermal hotspots break the limit of nanoscale heating and reach 3× higher peak temperatures with exponentially enhanced rates; (3) Metal nitride nano-arrays integrated with single-atom catalysts grant thermal stability beyond 1000 °C.
HEATPULSE represents a revolution in green reactor technology by shifting from burning fossil fuels to heat-pulsing with light, powered by renewables. The project will lead to the new field of photocatalysis beyond the steady-state at the crossroads of catalysis, nanophotonics, and materials science. With an accomplished track record in nanoscale light-driven chemistry, and as a pioneer in the field of pulsed catalysis at both experimental and theoretical level, I am uniquely suited to unlock the full potential of pulsed photothermal catal