Harnessing spinal electrical stimulation to modulate autonomic function after sp...
Harnessing spinal electrical stimulation to modulate autonomic function after spinal cord injury
Severe spinal cord injury (SCI) interrupts descending sympatho-excitatory axons responsible for cardiovascular control. Devoid of supraspinal input, sympathetic circuits within the spinal cord undergo significant plastic changes....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
WALK AGAIN
Multi pronged Strategies to Regain Voluntary Motor Functions...
1M€
Cerrado
SAF2016-79279-R
NEUROMODULACION ELECTRICA DEL CONECTOMA CORTICO-MEDULAR PARA...
194K€
Cerrado
EPI_nanoSTIM
Enabling motor control after a spinal cord injury through na...
262K€
Cerrado
SPINAL CORD REPAIR
Spinal locomotor circuits organization and repair after inj...
4M€
Cerrado
HOW2WALKAGAIN
Mechanisms of recovery after severe spinal cord injury
2M€
Cerrado
CRASCI
Spatial temporal characteristics of Cortical Reorganization...
170K€
Cerrado
Información proyecto symESTIM
Duración del proyecto: 24 meses
Fecha Inicio: 2020-02-25
Fecha Fin: 2022-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Severe spinal cord injury (SCI) interrupts descending sympatho-excitatory axons responsible for cardiovascular control. Devoid of supraspinal input, sympathetic circuits within the spinal cord undergo significant plastic changes. These changes lead to a debilitating clinical scenario that includes frequent bouts of hypertension (autonomic dysreflexia) and orthostatic hypotension, conditions which have extremely limited treatment options and lead to increased risk for cardiovascular disease. Here, I propose to deconstruct the sympathetic circuitry within the spinal cord in order to develop a targeted electrical neuroprosthesis that prevents the development of these clinical conditions. To dissect the sympathetic circuitry that drives sympathetic dysfunction after SCI, I will deploy judicious associations of optogenetics, chemogenetics, calcium imaging, virus-mediated tract-tracing and whole brain-spinal cord imaging in transgenic rats. For example, the catecholaminergic specificity of TH:Cre rats will enable the visualization of the residual descending sympatho-excitatory axons following severe contusion SCI, and will provide specific access to splanchnic ganglia neurons. This understanding of the sympathetic circuitry will allow me to map the hemodynamic responses following electrical spinal cord stimulation to the modulation of specific circuits and connections. This knowledge will then guide the development of a tailored neuroprosthesis targeting these circuits in order to regulate sympathetic dysfunction after SCI. Finally, I will exploit this neuroprosthesis to rehabilitate the sympathetic system after SCI, which I will demonstrate with longitudinal functional assessments and detailed anatomical evaluations. My ultimate goal is to develop targeted autonomic neurorehabilitation—a novel method to treat autonomic dysfunction after SCI that will improve the quality of life of those suffering from this condition.