This research project focuses on the structure, classification and rigidity of three closely related objects: group
actions on measure spaces, orbit equivalence relations and von Neumann algebras. Over the last 15 years, the stud...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MTM2010-15296
REPRESENTACIONES Y CARACTERES DE GRUPOS FINITOS
48K€
Cerrado
RIGIDITY
Rigidity and classification of von Neumann algebras
1M€
Cerrado
D07.SYMGPS.OX
Vertices of simple modules for the symmetric and related fin...
161K€
Cerrado
PGC2018-096872-B-I00
GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS
26K€
Cerrado
B10NonAbBlcksETH
Representation Theory of Blocks of Group Algebras with Non a...
171K€
Cerrado
Información proyecto GAN
Duración del proyecto: 60 meses
Fecha Inicio: 2015-03-25
Fecha Fin: 2020-03-31
Líder del proyecto
UNIVERSITE PARISSACLAY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
877K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This research project focuses on the structure, classification and rigidity of three closely related objects: group
actions on measure spaces, orbit equivalence relations and von Neumann algebras. Over the last 15 years, the study of interactions between these three topics has led to a process of mutual enrichment, providing both striking theorems and outstanding conjectures.
Some fundamental questions such as Connes' rigidity conjecture, the structure of von Neumann algebras associated with higher rank lattices, or the fine classification of factors of type III still remain untouched. The general aim of the project is to tackle these problems and other related questions by developing a further analysis and understanding of the interplay between von Neumann algebra theory on the one hand, as well as ergodic and group theory on the other hand. To do so, I will use and combine several tools and develop new ones arising from Popa's Deformation/Rigidity theory, Lie group theory (lattices, boundaries), topological and geometric group theory and representation group theory (amenability, property (T)). More specifically, the main directions of my research project are:
1) The structure of the von Neumann algebras arising from Voiculescu's Free Probability theory: Shlyakhtenko's free Araki-Woods factors, amalgamated free product von Neumann algebras and the free group factors.
2) The structure and the classification of the von Neumann algebras and the measured equivalence relations arising from lattices in higher rank semisimple connected Lie groups.
3) The measure equivalence rigidity of the Baumslag-Solitar groups and several other classes of discrete groups acting on trees.