Green Route to Wood Derived Janus Particles for Stabilized Interfaces
Emulsions are elemental to many aspects of every-day life, from food to pharmaceuticals. However, today’s emulsion science faces a grand challenge in developing stabilizers with outstanding functionality in a sustainable manner. T...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PARTIFACE
Duración del proyecto: 77 meses
Fecha Inicio: 2019-12-19
Fecha Fin: 2026-05-31
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Emulsions are elemental to many aspects of every-day life, from food to pharmaceuticals. However, today’s emulsion science faces a grand challenge in developing stabilizers with outstanding functionality in a sustainable manner. To enable society’s transformation from oil-based economy to bioeconomy, there is an urgent need to develop sophisticated biocompatible materials, such as stabilizers of food and non-food emulsions, from biomass-derived precursors through sustainable conversion routes. Current bio-based stabilizers are poorly defined and not as efficient as the synthetic ones, primarily because key technologies to construct sophisticated hierarchical structures from abundant biopolymers are lacking. I will use my expertise on wood biomass and emulsion stabilizer research to develop a novel approach for asymmetric, bi-facial Janus nanoparticles from two of the most abundant, but underused biopolymers: lignin and hemicelluloses. I will develop a green conversion route using enzymatic crosslinking to build a novel concept: tailored wood-based Janus particles with superior capacity to stabilize emulsion interfaces. I will further tailor the particles to control their cooling rate through reversible bond formation, which will revolutionize the materials science. To achieve this ambitious goal, it is crucial to carefully characterize the particles and formed interfaces. I will develop a novel method to characterize real emulsion systems with high precision, which existing methods cannot achieve. PARTIFACE will establish a green route to sophisticated hierarchical architectures—bi-facial Janus-particle-stabilized interfaces—and thermal control systems utilizing abundant bioresources. The project will lead to a breakthrough in colloid and interface science and contribute to more sustainable use of Earth’s resources.