The GRINDOOR project aims at developing and implementing new materials that enable huge energy savings in buildings and improve the quality of the indoor environment. About 40% of the primary energy, and 70% of the electricity, is...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-131709B-I00
DISEÑO Y DESARROLLO DE NANOCOMPOSITES INTELIGENTES QUE RESPO...
81K€
Cerrado
PID2019-107808RA-I00
DINAMICA DE ELECTRONES EN INTERFACES PUNTO CUANTICO-OXIDO ME...
97K€
Cerrado
NanoFLUX
Revolutionary nano coatings for enhanced heat transfer in h...
71K€
Cerrado
RTC-2014-2869-5
Desarrollo de recubrimientos nanotecnológicos para mejorar...
236K€
Cerrado
TED2021-130957B-C54
DESARROLLO DE MATERIALES NANOESTRUCTURADOS PARA IMANES LIBRE...
230K€
Cerrado
COOL-COVERINGS
Development of a novel and cost effective range of nanotech...
4M€
Cerrado
Información proyecto GRINDOOR
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The GRINDOOR project aims at developing and implementing new materials that enable huge energy savings in buildings and improve the quality of the indoor environment. About 40% of the primary energy, and 70% of the electricity, is used in buildings, and therefore the outcome of this project can have an impact on the long-term energy demand in the EU and the World. It is a highly focused study on new nanomaterials based on some transition metal oxides, which are used for four interrelated applications related to indoor lighting and indoor air: (i) electrochromic coatings are integrated in devices and used in smart windows to regulate the inflow of visible light and solar energy in order to minimize air condition and create indoor comfort, (ii) thermochromic nanoparticulate coatings are used on windows to provide large temperature-dependent control of the inflow of infrared solar radiation (in stand-alone cases as well as in conjunction with electrochromics), (iii) oxide-based gas sensors are used to measure indoor air quality especially with regard to formaldehyde, and (iv) photocatalytic coatings are used for indoor air cleaning. The investigated materials have many things in common and a joint and focused study, such as the one proposed here, will generate important new knowledge that can be transferred between the various sub-projects. The new oxide materials are prepared by advanced reactive gas deposition—using unique equipment—and high-pressure reactive dc magnetron sputtering. The materials are characterized and investigated by a wide range of state-of-the-art techniques.