Green and Smart Communications with Energy Harvesting A Signal Processing Appro...
Green and Smart Communications with Energy Harvesting A Signal Processing Approach
Efficient usage of energy resources is a growing concern in today's communication systems. Solutions that consider energy harvesting, where nodes in a communication system utilize other available energy sources, such as solar, w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PCIN-2013-027
ENERGY HARVESTING COMMUNICATION NETWORKS: OPTIMIZATION AND D...
115K€
Cerrado
NEWSENs
eNergy nEutral Wireless SEnsor Networks
152K€
Cerrado
EnABLES
European Infrastructure Powering the Internet of Things
5M€
Cerrado
TEC2013-44591-P
REDES INTELIGENTES DE COMUNICACIONES INALAMBRICAS CON RECOLE...
48K€
Cerrado
EIN2020-112456
SISTEMA ULTRAEFICIENTE PARA ALIMENTACION DE SISTEMAS REMOTOS
15K€
Cerrado
MICROBAT
Wireless devices for smart energy management systems
71K€
Cerrado
Información proyecto GRENHAS
Duración del proyecto: 24 meses
Fecha Inicio: 2015-02-23
Fecha Fin: 2017-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Efficient usage of energy resources is a growing concern in today's communication systems. Solutions that consider energy harvesting, where nodes in a communication system utilize other available energy sources, such as solar, wind power or man made signals, instead of completely relying on a fixed battery or the power from the grid, offer a promising perspective. Such approaches have a wide range of applications including wireless sensor networks, smart homes and smart cities.
Understanding the information transfer capabilities of communication systems with energy harvesting features have been the attention of a number of recent works. At the moment the main line of research on the subject is typically done in an information theoretic framework with the rate maximization criterion. This line of work is important for understanding the fundamental limits in energy harvesting systems, yet it falls short in applicability in the context of practical scenarios.
Here we propose an alternative estimation theoretic perspective where the problem is investigated within a practical signal processing framework. We will focus on efficient transmission and resource allocation strategies. Practical receiver structures with linear filtering, low complexity designs such as linear precoders, power allocation methods will be important ingredients in our work. The resulting solutions will complement the existing information theoretic solutions, and contribute to creating future green and smart communication systems.