The aim of this project is to demonstrate an entirely new type of compact laser source by exploiting the unique properties of graphene to realise a solid-state free electron laser. Free electron lasers (FELs) represent a radical a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2013-44174-P
FRONTERAS DE LA OPTICA ULTRARRAPIDA: CIENCIA Y APLICACIONES...
121K€
Cerrado
FEMTOELEC
Innovative Femtosecond laser plasma based electron source fo...
1M€
Cerrado
JCI-2008-3325
Estudio de la ionización y la disociación de átomos y molécu...
101K€
Cerrado
ULTRAFASTELECTRONS
Advanced ultrafast electron sources for quantum optics exper...
100K€
Cerrado
COSIT
Compact High Brilliance Single Frequency Terahertz Source
1M€
Cerrado
X RAY FEL
Ultrafast atomic and molecular physics at x ray free electro...
100K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this project is to demonstrate an entirely new type of compact laser source by exploiting the unique properties of graphene to realise a solid-state free electron laser. Free electron lasers (FELs) represent a radical alternative to con-ventional lasers as they do not have the restrictions of conventional lasers on op-erating wavelengths, and they are potentially the most flexible, high power and ef-ficient generators of tuneable coherent radiation from the ultra-violet to the infra-red. In a FEL radiation is emitted from an electron beam travelling in a vacuum and passing through an undulatory magnetic field, and the emission wavelength is only determined by the period of the magnetic field and electron beam energy. However, current free electron lasers are large and expensive facilities. The recent isolation of graphene, in which electrons travel ballistically and at extremely high saturation velocities, has provided an exciting potential route for creating a compact solid state free electron laser. In this project we will first develop the theory for the operation of such a device and will use this to design and fabricate devices containing a suspended graphene active region. Metallic gratings will be patterned on top of, or below, the graphene to provide the modulation needed to accelerate/decelerate the electrons, causing the emission of radiation in the 0.2 to 10 THz range.We will then integrate an electromagnetic feedback cavity to enhance stimulated emission and to produce coherent radiation. The demonstration of such a room temperature source would challenge established notions of laser operation and would be a significant technological development.