Graph Signal Processing Models for Neurovascular Decoupling.
Blood Oxygenation Level Dependent (BOLD) signal is a widespread functional Magnetic Resonance Imaging (fMRI) technique to non-invasively study brain activity, and it relies on the mechanism of Neurovascular Coupling (NC), i.e. cha...
ver más
PID2019-105520GB-I00
ESTUDIO CUANTITATIVO DE LAS FLUCTUACIONES EN LA CONECTIVIDAD...
47K€
Cerrado
PID2021-125534OB-I00
ESTUDIO DE LAS FLUCTUACIONES TEMPORALES DE LA CONECTIVIDAD F...
53K€
Cerrado
TEC2012-38453-C04-03
CLASIFICACION DE PATRONES DE CONECTIVIDAD FUNCIONAL DE EEG Y...
39K€
Cerrado
EQC2019-005665-P
Caracterización mediante NIRS + EEG de la respuesta cerebral...
240K€
Cerrado
PSI2013-41400-P
MODELOS ESTADISTICOS PARA EL ANALISIS DE LA CONECTIVIDAD CER...
67K€
Cerrado
PGC2018-095829-B-I00
INDICADORES ESTADISTICOS PARA EL ESTUDIO DE REDES DE CONECTI...
71K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
Blood Oxygenation Level Dependent (BOLD) signal is a widespread functional Magnetic Resonance Imaging (fMRI) technique to non-invasively study brain activity, and it relies on the mechanism of Neurovascular Coupling (NC), i.e. changes in cerebral blood flow driven by neuronal activity. However, there are various confounding factors for NC, such as homoeostatic physiological changes, or NC uncoupling driven by certain pathologies. Currently, there is no method to disentangle the information associated with neuronal activity from the vascular response. This is an important issue in both physiological imaging and brain activity investigation, as the two signal sources act as competing confounding factors. Furthermore, although vessels are the main blood distribution system, they are mostly ignored when taking into account BOLD analyses.
In this project, I will first create a graph model of cerebral vessels to assess cerebrovascular connectivity. I will then use graph signal processing, a novel signal processing technique based on graphs, to embed BOLD signal fluctuations into the vascular and the more traditional tractography-based graphs to disentangle the propagation of neuronal activity and blood flow in these two pathways. This technique will allow disentangling the components of NC non-invasively, offering new insight on brain activity and neurovascular coupling, and allowing further studies on pathological NC uncoupling, such as pre-surgical imaging for tumour.
I will apply this model at the macro- (whole-brain) and meso- (grey-matter- layers) scale, connecting the properties of NC in functional imaging between them. The application will be validated in high (3 Tesla) and ultra-high (7 Tesla) MRI fields to address its feasibility for both research and clinical application. Finally, BOLD will be compared with non-BOLD functional techniques, such as Arterial Spin Labelling and Vascular Space Occupancy, to shed light into the imaging of NC and brain activity.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.