GRAPH reconstruction, COspectrality and SYnchronisation through the lens of numb...
GRAPH reconstruction, COspectrality and SYnchronisation through the lens of number theory, geometry and algorithms
Graph theory is a field with many beautiful and powerful connections to other areas of mathematics and computer science. In this project, the experienced researcher (ER), an expert in graph theory, will further explore these conne...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MTM2008-06578
MATRICES DE HADAMARD Y CODIGOS CORRECTORES DE ERRORES
35K€
Cerrado
MTM2015-65798-P
ALGEBRA LINEAL NUMERICA ESTRUCTURADA PARA MATRICES CONSTANTE...
45K€
Cerrado
BUKA
Limits of Structural Tractability
2M€
Cerrado
MTM2013-40455-P
METODOS COMPUTACIONALES Y EFECTIVOS EN ALGEBRA, D-MODULOS Y...
90K€
Cerrado
EXCICO
Extremal Combinatorics and Circuit Complexity
180K€
Cerrado
Información proyecto GRAPHCOSY
Duración del proyecto: 24 meses
Fecha Inicio: 2022-06-10
Fecha Fin: 2024-06-30
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
188K€
Descripción del proyecto
Graph theory is a field with many beautiful and powerful connections to other areas of mathematics and computer science. In this project, the experienced researcher (ER), an expert in graph theory, will further explore these connections together with the experts in number theory, manifold and parameterised complexity from the host. Moreover, solving the chosen problems will improve our understanding of several famous open problems.
- Graph reconstruction (WP1): does local information of the graph (e.g. subgraph counts) determine graph invariants (e.g. the number of spanning trees)? The ER will continue her excellent track record in this area with the help of the number theoretical expertise of the host.
- Graph isomorphism (WP2): study small common covers of pairs of graphs, building up to the computation of a set of matrices whose spectra determine whether the graphs are isomorphic. This package carries concepts and techniques within the expertise of the supervisor to graph theory, opening up a new avenue of research.
- Černý's conjecture (WP3): probabilistic and parameterised complexity aspects are studied of the question `How long is the shortest reset word in a given finite state automaton?'. This combines the expertise of the ER in extremal and probabilistic combinatorics with the expertise in parameterised complexity of the host.