Glycan foldamers: designing oligosaccharides to build three-dimensional architec...
Glycan foldamers: designing oligosaccharides to build three-dimensional architectures
Natural biopolymers have inspired the development of synthetic analogues – i.e. foldamers – capable of adopting defined conformations and forming programmable three-dimensional architectures. These compounds are mainly based on pe...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-104650GB-C22
CERRANDO LA BRECHA ENTRE LOS POLIMEROS SINTETICOS Y LOS BIOP...
85K€
Cerrado
CTQ2010-18938
GLICOCONJUGADOS A PARTIR DE AMINOPOLIOLES. ESTRUCTURA, AGREG...
100K€
Cerrado
MuST ArtEM
Multicomponent Supramolecular Structures as Artificial Enzym...
188K€
Cerrado
MAT2011-24306
HIDROGELES BIOMOLECULARES - DE SUS ESTRUCTURAS Y DINAMICAS S...
90K€
Cerrado
MAT2010-15310
OBTENCION DE MATERIALES Y SISTEMAS ALTAMENTE FUNCIONALES A P...
315K€
Cerrado
CTQ2012-38543-C03-03
MOLECULAS PSEUDOPEPTIDICAS: SISTEMAS COMPLEJOS DE RECEPTOR-H...
109K€
Cerrado
Información proyecto GLYCOFOLD
Duración del proyecto: 61 meses
Fecha Inicio: 2022-11-21
Fecha Fin: 2027-12-31
Descripción del proyecto
Natural biopolymers have inspired the development of synthetic analogues – i.e. foldamers – capable of adopting defined conformations and forming programmable three-dimensional architectures. These compounds are mainly based on peptides and nucleic acids, that are well understood at the molecular level. The diversity, intrinsic chirality, and ability to generate hierarchical assemblies suggest that carbohydrates hold an even larger potential for the generation of three-dimensional structures. However, the complexity of carbohydrate synthesis and structural analysis have prevented access to synthetic carbohydrates capable of adopting defined geometries.
I propose the creation of carbohydrate foldamers capable of 1) adopting rigid secondary structures and 2) assembling into supramolecular architectures. To achieve these goals, we will address fundamental questions related to carbohydrate structure, design new methods to stabilize particular conformations, and we will implement protocols for systematic structural analysis. State-of-the-art synthetic platforms (i.e. automated glycan assembly) and analytical techniques (i.e. NMR spectroscopy, microED, and single molecule imaging) will be the tools to complete this ambitious project. My group has proved to be very successful at gaining a basic understanding of carbohydrate structure and aggregation. Building upon these preliminary results, I aim to develop programmable carbohydrate architectures, which have the potential to open a new field of carbohydrate and supramolecular chemistry.
Analogous to the birth of a new field after the discovery of peptide-based foldamers, carbohydrate foldamers could find applications in several areas, including material science, biology, and catalysis. Moreover, carbohydrate foldamers will expand our understanding of carbohydrate structures and interactions, and new analytical protocols will standardize the characterization of carbohydrate materials.