Innovating Works

GMLP

Financiado
Global Methods in the Langlands Program
The Langlands program is a conjectural framework for understanding the deep relations between automorphic forms and arithmetic. It implies a parameterization of representations of Galois groups of (local or global) fields in terms... The Langlands program is a conjectural framework for understanding the deep relations between automorphic forms and arithmetic. It implies a parameterization of representations of Galois groups of (local or global) fields in terms of representations of (p-adic or adelic) reductive groups. While making progress in the Langlands program often means overcoming significant technical obstacles, new results can have concrete applications to number theory, the proof of Fermat's Last Theorem by Wiles being a key example. Recently, V. Lafforgue has made a striking breakthrough in the Langlands program over function fields, by constructing an `automorphic-to-Galois' Langlands correspondence. As a consequence, this should imply the existence of a local Langlands correspondence over equicharacteristic non-archimedean local fields. The goal of this proposal is to show the surjectivity of this local Langlands correspondence. My strategy will be global, and will involve solving global problems of strong independent interest. I intend to establish a research group to carry out the following objectives, in the setting of global function fields: I. Establish automorphy lifting theorems for Galois representations valued in the (Langlands) dual group of an arbitrary split reductive group. II. Establish cases of automorphic induction for arbitrary reductive groups. III. Prove potential automorphy theorems for Galois representations valued in the dual group of an arbitrary reductive group. IV. Establish cases of soluble base change and descent for automorphic representations of arbitrary reductive groups. I will then combine these results to obtain the desired surjectivity. This will be a milestone in our understanding of the Langlands correspondence for function fields. ver más
30/06/2022
1M€
Duración del proyecto: 68 meses Fecha Inicio: 2016-10-07
Fecha Fin: 2022-06-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-06-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2016-STG: ERC Starting Grant
Cerrada hace 9 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
THE CHANCELLOR MASTERS AND SCHOLARS OF THE UN... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5