Global change impacts on cyanobacterial bloom toxicity
Harmful cyanobacterial blooms produce toxins that are a major threat to water quality and human health. Blooms increase with eutrophication and are expected to be amplified by climate change. Yet, we lack a mechanistic understandi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-129966B-C31
IMPACTO DE LA CONTAMINACION URBANA ASOCIADA A EVENTOS CLIMAT...
230K€
Cerrado
TED2021-129788B-I00
EFECTOS DEL CAMBIO CLIMATICO EN LA BIODIVERSIDAD DE CUENCAS...
110K€
Cerrado
TED2021-129873B-I00
PAPEL DEL CICLO BIOGEOQUIMICO DEL NITROGENO EN DESENCADENAR...
121K€
Cerrado
TED2021-129966B-C32
IMPACTO DE LA CONTAMINACION POR ESCORRENTIA URBANA SOBRE LA...
151K€
Cerrado
PID2019-110521GB-I00
IMPACTOS DE LOS CAMBIOS GLOBALES ANTROPOGENICOS EN LAS RESER...
333K€
Cerrado
TED2021-130123B-I00
MAS ALLA DEL USO DE TECNOLOGIAS DIGITALES EN BLOOMS DE CIANO...
396K€
Cerrado
Información proyecto BLOOMTOX
Duración del proyecto: 63 meses
Fecha Inicio: 2022-06-16
Fecha Fin: 2027-09-30
Descripción del proyecto
Harmful cyanobacterial blooms produce toxins that are a major threat to water quality and human health. Blooms increase with eutrophication and are expected to be amplified by climate change. Yet, we lack a mechanistic understanding on the toxicity of blooms, and their response to the complex interplay of multiple global change factors. Bloom toxicity is determined by a combination of mechanisms acting at different ecological scales, ranging from cyanobacterial biomass accumulation in the ecosystem, to the dominance of toxic species in the community, contribution of toxic genotypes in the population, and the amounts of toxins in cells. I will develop a fundamental understanding of bloom toxicity by revealing the combined effects of nutrients, elevated pCO2 and warming at each scale, and integrate these responses using a unique combination of ecological theory, technological advances, and methodological innovations. Specifically, I will use first principles to scale from cellular traits, like carbon and nutrient acquisition, cellular toxin synthesis and growth rates, to population and community dynamics. To enable rapid assessment of numerous cyanobacterial traits, I will set-up a high-throughput flow-cytometry pipeline. Also, I will develop a novel lab-on-a-chip experimental platform to allow massive parallel screening of key competitive traits in various phytoplankton species and cyanobacterial genotypes. To scale from these cellular traits to population and community interactions, I will study genotype selection and interspecific resource competition in state-of-the-art chemostats. I will further scale-up to natural communities in the field and in large-scale indoor mesocosms to assess global change impacts on the mechanisms underlying toxicity of (near) real-life blooms. With this unique combination of scaling approaches, I will provide a breakthrough in our mechanistic understanding on the toxicity of cyanobacterial blooms, and their response to global change.