The issues of the research project are focused on the theory of integrable systems and its relation to the field theories. The first objective is further development of the theory of the integrability preserving dispersive deforma...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
POISSONALGEBRAS
Poisson Algebras deformations and resolutions of singularit...
45K€
Cerrado
AbQuantumSpec
Abelianisation of Connections Quantum Curves and Spectral...
225K€
Cerrado
MACI
Moduli Algebraic Cycles and Invariants
2M€
Cerrado
INTSYS
Algebraic Geometric and Field Theoretic Aspects of Integra...
195K€
Cerrado
MTM2011-22528
ESTRUCTURAS RIEMANNIANAS HOMOGENEAS DE TIPO HIPERBOLICO E IN...
56K€
Cerrado
MSCIH
Moduli spaces of curves and integrable hierarchies
195K€
Cerrado
Información proyecto GAINS
Líder del proyecto
UNIVERSITY OF GLASGOW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
161K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The issues of the research project are focused on the theory of integrable systems and its relation to the field theories. The first objective is further development of the theory of the integrability preserving dispersive deformations of integrable dispersionless systems. Next is the formulation of the classical R-matrix approach to the Frobenius manifolds. Another objective is the revision of the theory of Whitham hierarchies related to the moduli spaces of Riemann surfaces of all genera. The last research objective is to begin the programme on quantization of Whitham hierarchies of all genera, i.e. construction of dispersionful Whitham hierarchies. In our research we are going in general to apply methods of differential algebraic geometry. If the Marie Curie Intra-European Fellowship will be awarded, the proposed research will take place in the research group Integrable Systems and Mathematical Physics at the Department of Mathematics of the University of Glasgow. Scientists from the host institution are leading scientists in the subjects considered in this project. The scientist in charge of the supervision of the project is Dr. Ian Strachan. Training in the above broad perspectives will give me possibility of improving of my knowledge of the theory of integrable systems and its relations with other branches of mathematical physics like Frobenius manifolds. The experience gained will bring me closer to become a fully professional and independent scientist. All these together will contribute to completion and diversification of my expertise.