"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Lan...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto GeoLocLang
Duración del proyecto: 70 meses
Fecha Inicio: 2017-05-12
Fecha Fin: 2023-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Langlands correspondence. This conjecture says that given a discrete local Langlands parameter of a reductive group over a local field of equal or unequal characteristic, one should be able to construct a perverse Hecke eigensheaf on the stack of G-bundles on the ""curve"" I defined and studied in my joint work with Fontaine.
I propose to construct, study and establish the basic properties of the geometric objects involved in this conjecture, this stack of G-bundles being a ""perfectoid stacks"" in the framework of Scholze theory of perfectoid spaces. At the same time I propose to establish the first steps in the proof of this conjecture, study particular cases in more details and explore consequences of this conjecture."