"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Lan...
"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Langlands correspondence. This conjecture says that given a discrete local Langlands parameter of a reductive group over a local field of equal or unequal characteristic, one should be able to construct a perverse Hecke eigensheaf on the stack of G-bundles on the ""curve"" I defined and studied in my joint work with Fontaine.
I propose to construct, study and establish the basic properties of the geometric objects involved in this conjecture, this stack of G-bundles being a ""perfectoid stacks"" in the framework of Scholze theory of perfectoid spaces. At the same time I propose to establish the first steps in the proof of this conjecture, study particular cases in more details and explore consequences of this conjecture."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.