Innovating Works

GeoLocLang

Financiado
GeoLocLang
"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Lan... "I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Langlands correspondence. This conjecture says that given a discrete local Langlands parameter of a reductive group over a local field of equal or unequal characteristic, one should be able to construct a perverse Hecke eigensheaf on the stack of G-bundles on the ""curve"" I defined and studied in my joint work with Fontaine. I propose to construct, study and establish the basic properties of the geometric objects involved in this conjecture, this stack of G-bundles being a ""perfectoid stacks"" in the framework of Scholze theory of perfectoid spaces. At the same time I propose to establish the first steps in the proof of this conjecture, study particular cases in more details and explore consequences of this conjecture." ver más
31/03/2023
1M€
Duración del proyecto: 70 meses Fecha Inicio: 2017-05-12
Fecha Fin: 2023-03-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-03-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2016-ADG: ERC Advanced Grant
Cerrada hace 8 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5