GEnerating extreme NEutrons for achieving controlled r process nucleosyntheSIS
The project aim is to perform the first direct measurements of neutron capture and beta-decay rates related to the r-process of nucleosynthesis. This process, based on squeezing at once multiple neutrons in a nucleus, is presently...
The project aim is to perform the first direct measurements of neutron capture and beta-decay rates related to the r-process of nucleosynthesis. This process, based on squeezing at once multiple neutrons in a nucleus, is presently thought to be the main mechanism that forms the heaviest elements in our Solar System and in stars.
At present, there are large discrepancies between the observed element abundances in stars and those found from simulations. It is speculated that this problem stems from the uncertainties in nuclear parameters, particularly in the plasma environment. These nuclear parameters have not been experimentally verified due to the too-low flux of current neutron facilities and the lack of means to create on-site hot and dense plasmas.
Lasers are not the first thing that comes to mind as a neutron source, but with the upcoming ultra high-power laser facilities (Apollon in 2018 and ELI-NP in 2019), high-density and high-energy protons can be generated. Through spallation, these can then produce neutrons with the needed flux, a flux comparable to that found in Supernovae. To further emulate the astrophysical scenario, auxiliary lasers can be used to turn the target material into a plasma.
In practice, this project will aim to measure neutron capture and beta-decay rates, as well as yields and abundances of the products of nucleosynthesis obtained by exposing heavy-ion targets to laser-produced extreme neutron fluxes. These targets will be either in a plasma or a solid state. In plasmas, we will investigate the effect of excited nuclear states, created by the plasma photons and electrons, on neutron capture. In solid targets, we will take advantage of the unique possibility of generating on-site unstable nuclei, and then re-expose them to the neutron beam in order to measure double neutron capture.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.