General principles of representing space and time during automatic formation of...
General principles of representing space and time during automatic formation of visual and auditory chunks and objects
The process by which humans formulate increasingly complex internal representations from sensory stimuli based on their available knowledge has been investigated traditionally by a somewhat disconnected set of approaches under var...
The process by which humans formulate increasingly complex internal representations from sensory stimuli based on their available knowledge has been investigated traditionally by a somewhat disconnected set of approaches under various labels such as feature detection, grouping, figure-ground segregation, chunking, categorization and learning. We explore the idea that there might exist some general unconscious mechanisms of this pattern formation process that work similarly and repeatedly across different levels of complexity from basic segmentation to complex chunking-based learning and across different modalities. such as vision (typically viewed with spatial processing) and audition (associated with temporal processing). We will follow 4 principles in our work to test this. First, we will focus a) on the auditory and visual modalities, b) with space and time as the two dependent dimensions of comparison, and c) we will test the two endpoints of the complexity scale: at one end, pure tones in audition and single squares in vision easily treated by instantaneous perceptual biases and at the other end, complex time- and space-varying patterns requiring learning. Second, we will perform the equivalent version of each experiment in both modalities to check the generality of the mechanisms that establish the representations of the input. Third, we will use the same testing method across experiments, measuring behavioral sensitivity induced by the resulting representation to quantify the representation’s structure and its EEG correlates. Fourth, we will interpret our results by building a new hypothesis about humans’ internal representation into a Hierarchical Bayesian Model so that we can derive further individual- and population-specific predictions to inspire subsequent empirical work. Our integrated approach will contribute to a deeper understanding of the general principles of representation forming and its malfunctioning in special populations.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.