Gaseous detectors for neutrino physics at the European Spallation Source
The recent detection of the coherent elastic neutrino-nucleus scattering (CEnNS) opens the possi- bility of using neutrinos to explore physics beyond the Standard Model deploying small detectors. However, the CEnNS process generat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
vPESS
Neutrino physics at ESS using coherent elastic neutrino nucl...
163K€
Cerrado
PID2021-125028OB-C22
IMPLEMENTANDO RESPUESTA TEMPORAL EN CENTELLEO DENTRO DE UNA...
47K€
Cerrado
ESSCEvNS
Beyond the Standard Model: Coherent Neutrino Scattering at t...
3M€
Cerrado
RES-NOVA
A revolutionary archaeological Pb observatory for astrophysi...
3M€
Cerrado
NEUTRINOSSNOPLUS
Towards the investigation of the nature of neutrinos with SN...
172K€
Cerrado
LORD
First R n D and Physics Results with a Novel Opaque Neutrino...
185K€
Cerrado
Información proyecto GanESS
Duración del proyecto: 60 meses
Fecha Inicio: 2022-01-25
Fecha Fin: 2027-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The recent detection of the coherent elastic neutrino-nucleus scattering (CEnNS) opens the possi- bility of using neutrinos to explore physics beyond the Standard Model deploying small detectors. However, the CEnNS process generates signals at the few keV level, requiring very sensitive detection technologies. The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos offering an opportunity to explore at depth the physics of CEnNS, with large discovery potential. In this project, I propose to apply the high-pressure noble gas TPC technology to the detection of the CEnNS process at the ESS. This will require the detection techniques sensitive to very low-energy depositions as well as improving the current knowledge of the quenching factor for nuclear recoils in xenon, argon and neon gas at keV energies. This project proposes the development of a novel detector able to hold 20 kg of xenon gas at high pressure. The device will operate at the ESS, providing more than 7,000 CEnNS events per year, potentially overtaking the sensitivities of much larger detectors in current spallation sources. Operation with xenon will explore most of the possible new physics associated with the CEnNS process. Furthermore, the high pressure technology offers the possibility to operate the same detector with different gases at minimal extra costs, thus providing a unique tool to further explore any signatures of new physics at the ESS.