Innovating Works

FRUMKIN

Financiado
Fundamental Research into Understanding the Molecular structure of eleKtrochemic...
Fundamental Research into Understanding the Molecular structure of eleKtrochemical INterfaces The FRUMKIN project aims to develop and test a new model for the electric double-layer structure of the electrode-electrolyte interface and to investigate the impact of this double-layer structure on the kinetics and selectivity o... The FRUMKIN project aims to develop and test a new model for the electric double-layer structure of the electrode-electrolyte interface and to investigate the impact of this double-layer structure on the kinetics and selectivity of electrochemical and electrocatalytic reactions. The inspiration for this new model comes from my own recent work that the classical Gouy-Chapman-Stern model for the electric double layer fails to properly describe the interface between an aqueous electrolyte and single-crystal platinum and gold electrodes. Specifically, our results indicate that there is an attractive interaction between ions and the electrode surface (unaccounted for in the Gouy-Chapman-Stern theory) that accumulates ions in the diffuse double layer, and that ions in the double layer interact with the electrode and with themselves through water-mediated hydration forces, approximately following the Hofmeister series. These effects are observed even for low electrolyte concentrations, explaining the invalidity of the Gouy-Chapman-Stern theory. The FRUMKIN project will approach its research objectives using a variety of high-level experimental, spectroscopic, theoretical, and computational techniques. The heart of the experimental work is based on ac voltammetry, i.e. differential capacitance measurements of the various interfaces, and electrochemical measurements of reactivity. Modelling of the experimental differential capacitance curves is based on first-principles DFT calculations and coarse-grained free-energy-based classical density functional simulations of the double-layer properties. Experimental molecular details of both double-layer structure and reactivity will be obtained from in situ vibrational spectroscopy (Infrared and Raman) and advanced in situ X-Ray spectroscopy, specifically Near-Ambient Pressure X-Ray Photoelectron Spectroscopy and Total Electron Yield X-Ray Absorption Spectroscopy. ver más
31/10/2026
3M€
Perfil tecnológico estimado
Duración del proyecto: 64 meses Fecha Inicio: 2021-06-13
Fecha Fin: 2026-10-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2021-06-13
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-ADG: ERC ADVANCED GRANT
Cerrada hace 4 años
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
UNIVERSITEIT LEIDEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5